

VPC3+C User Manual

Revision 3.04

Liability Exclusion

We have tested the contents of this document regarding agreement with the hardware and software described. Nevertheless, there may be deviations and we do not guarantee complete agreement. The data in the document is tested periodically, however. Required corrections are included in subsequent versions. We gratefully accept suggestions for improvements.

Copyright

Copyright © profichip GmbH 2004-2014. All Rights Reserved.

Unless permission has been expressly granted, passing on this document or copying it, or using and sharing its content are not allowed. Offenders will be held liable. All rights reserved, in the event a patent is granted or a utility model or design is registered.

This document is subject to technical changes.

Table of Contents

Intr	oduction	5
Fur	nctional Description	7
2.1	Overview	7
Pin	Description	9
3.1 3.2	Pin Assignment	9
Me	mory Organization	13
4.1 4.2 4.3	Control Parameters (Latches/Registers)	15
ASI	C Interface	19
5.1 5.2 5.3	5.1.1 Mode Register 0 5.1.2 Mode Register 1 5.1.3 Mode Register 2 5.1.4 Mode Register 3 Status Register Interrupt Controller 5.3.1 Interrupt Request Register	19 21 25 26 28
5.4	5.4.1 Automatic Baud Rate Identification	33 33
PR	OFIBUS DP Interface	35
6.1 6.2	Description of the DP Services	38 39 43 46 50 51
	Fur 2.1 Pin 3.1 3.2 Me 4.1 4.2 4.3 ASI 5.1 5.4 PR 6.1	Pin Description 3.1 Pin Assignment 3.2 Pinout. Memory Organization 4.1 Overview

7	PRO	OFIBUS DP Extensions	53
	7.1 7.2	Set_(Ext_)Prm (SAP 53 / SAP 61) PROFIBUS DP-V1	54
		7.2.1 Acyclic Communication Relationships	
	7.0	7.2.2 Diagnosis Model	
	7.3	PROFIBUS DP-V2	
		7.3.2 IsoM (Isochron Mode)	
		7.3.3 CS (Clock Synchronization)	
8	Har	dware Interface	75
	8.1	Universal Processor Bus Interface	75
	• • •	8.1.1 Overview	
		8.1.2 Bus Interface Unit	75
		8.1.3 Application Examples (Principles)	
		8.1.4 Application with 80C32 (2K Byte RAM Mode)	
		8.1.5 Application with 80C32 (4K Byte RAM Mode)	
	0.0	8.1.6 Application with 80C165	
	8.2 8.3	Dual Port RAM ControllerUART	
	o.s 8.4	ASIC Test	
9	PRO	OFIBUS Interface	85
	9.1	Pin Assignment	85
	9.2	Example for the RS485 Interface	
10	Оре	erational Specifications	87
	10.1	Absolute Maximum Ratings	87
	10.2	Recommended Operating Conditions	87
	10.3	General DC Characteristics	87
		Ratings for the Output Drivers	
		DC Electrical Characteristics Specification for 5V Operation	
		DC Electrical Characteristics Specification for 3.3V Operation	
	10.7	Timing Characteristics	
		10.7.1 System Bus Interface	
		10.7.3 Timing in the Asynchronous Intel Mode	
		10.7.4 Timing in the Synchronous Motorola Mode	
		10.7.5 Timing in the Asynchronous Motorola Mode	
	10.8		
	10.9	Processing Instructions	
	10.10	Ordering Information	102

Profichip's **VPC3+C** is a communication chip with processor interface for intelligent PROFIBUS DP-Slave applications. It's an enhancement of the **VPC3+B** in terms of protocol functions and power consumption.

The VPC3+C handles the message and address identification, the data security sequences and the protocol processing for PROFIBUS DP. In addition the acyclic communication and alarm messages, described in DP-V1 extension, are supported. Furthermore the slave-to-slave communication Data eXchange Broadcast (DXB) and the Isochronous Bus Mode (IsoM), described in DP-V2 extension, are also provided.

Automatic recognition and support of data transmissions rates up to 12 Mbit/s, the integration of the complete PROFIBUS DP protocol, 4K Byte communication RAM and the configurable processor interface are features to create high-performance PROFIBUS DP-Slave applications. The device can be operated with either 3.3V or 5V single supply voltage.

Profichip's **VPC3+** is the predecessor of VPC3+C and VPC3+B. **VPC3+** and **VPC3+C** are pin-compatible. Therefore VPC3+ can be replaced by VPC3+C in existing applications without any restrictions or SW-modifications. However, downgrading from VPC3+C to VPC3+ is only possible, if the additional features of VPC3+C (4K Byte RAM, DP-V1- or DP-V2-functionality, 3.3V supply) are not used.

As there are also simple devices in the automation engineering area, such as switches or thermoelements, that do not require a microcontroller for data preprocessing, profichip offers a DP-Slave ASIC with 32 direct input/output bits. The **VPCLS2** handles the entire data traffic independently. No additional microprocessor or firmware is necessary. The VPCLS2 is compatible to existing chips.

Further information about our products or current and future projects is available on our web page: http://www.profichip.com.

Notes:

6

2.1 Overview

The VPC3+C makes a cost optimized design of intelligent PROFIBUS DP-Slave applications possible.

The processor interface supports the following processor series:

Intel: 80C31, 80X86 80C166/165/167 Siemens:

Motorola: HC11-, HC16-, and HC916 types

The VPC3+C handles the physical layer 1 and the data link layer 2 of the ISO/OSI-reference-model excluding the analog RS485 drivers.

The integrated 4K Byte Dual-Port-RAM serves as an interface between the VPC3+C and the software/application. In case of using 2K Byte the entire memory is divided into 256 segments, with 8 bytes each. Otherwise in the 4K Byte mode the segment base addresses starts at multiple of 16. Addressing by the user is done directly, however, the internal Micro Sequencer (MS) addresses the RAM by means of the so-called basepointer. The base-pointer can be positioned at the beginning of a segment in the memory. Therefore, all buffers must be located at the beginning of a segment.

If the VPC3+C carries out a DP communication it automatically sets up all DP-SAPs. The various telegram information are made available to the user in separate data buffers (for example, parameter and configuration data). Three buffers are provided for data communication (three for output data and three for input data). As one buffer is always available for communication no resource problems can occur. For optimal diagnosis support, the VPC3+C offers two Diagnosis-Buffers. The user enters the updated diagnosis data into these buffers. One Diagnosis-Buffer is always assigned to the VPC3+C.

The Bus Interface Unit is a parameterizable synchronous/asynchronous 8bit interface for various Intel and Motorola microcontrollers/processors. The user can directly access the internal 2K/4K Byte RAM or the parameter latches and control registers via the 11/12-bit address bus.

Procedure-specific parameters (Station_Address, control bits, etc.) must be transferred to the Parameter Registers and to the Mode Registers after power-on.

The MAC status can be observed at any time in the **Status Register**.

Various events (e.g. various indications, error events, etc.) are entered in the Interrupt Controller. These events can be individually enabled via a mask register. Acknowledgement takes place by means of the acknowledge register. The VPC3+C has a common interrupt output.

The integrated **Watchdog Timer** is operated in three different states: BAUD_SEARCH, BAUD_CONTROL and DP_CONTROL.

The **Micro Sequencer** (MS) controls the entire process. It contains the DP-Slave state machine (DP_SM).

The integrated **4K Byte RAM** that operates as a Dual-Port-RAM contains procedure-specific parameters (buffer pointer, buffer lengths, Station_Address, etc.) and the data buffers.

In the **UART**, the parallel data flow is converted into the serial data flow and vice-versa. The VPC3+C is capable of automatically identifying the baud rates (9.6 Kbit/s - 12 Mbit/s).

The **Idle Timer** directly controls the bus times on the serial bus line.

3.1 Pin Assignment

Pin	Signal Name	In/Out	Description	Source / Destination					
1	xcs	I(C)	Chip-Select	C32 Mode (2 C165 Mode:	K Byte RAM): connect to VDD CS-Signal	CPU (80C165)			
	AB11	(-)	Address Bus 11 (C	32-Mode; 4K I	Byte RAM)	, ,			
_	XWR / E_CLOCK	1(0)	Write Signal / E_C	Write Signal / E_Clock for Motorola					
2	AB11	I(C)	Address Bus 11 (A	synchronous N	Motorola Mode; 4K Byte RAM)	CPU			
3	DIVIDER	I(C)	Setting the scaling factor for CLKOUT	2/4	'0' = CLK divided by 4 '1' = CLK divided by 2	Configuration Pin			
4	XRD / R_W	I(C)	Read Signal / Read	d _Write for Mo	otorola	CPU			
5	CLK	I(TS)	System Clock Inpu	t, 48 MHz		System			
6	VSS								
7	CLKOUT2/4	0	Clock Output (Syst	em Clock divid	ded by 2 or 4)	System, CPU			
8	XINT/MOT	I(C)	'0' = Intel Interface '1' = Motorola Inter	face		Configuration Pin			
9	X/INT	0	Interrupt			CPU; Interrupt- Controller			
10	AB10	I(CPD)	Address Bus	C32 Mode: C165 Mode:	'0' Address Bus	System, CPU			
11	DB0	I(C)/O	Data Dua	CDII Marray					
12	DB1	I(C)/O	Data Bus	CPU, Memory					
40	XDATAEXCH	0	Indicates DATA-EX	LED					
13	SYNC	0	Synchronization Si	CPU					
14	XREADY/XDTACK	0	Ready for external	System, CPU					
15	DB2	I(C)/O	Data Dua	CDII Marray					
16	DB3	I(C)/O	Data Bus	C165 mode:	Data/Address Bus separate	CPU, Memory			
17	VSS								
18	VDD								
19	DB4	I(C)/O							
20	DB5	I(C)/O	Data Bua	C32 mode:	Data/Address Bus multiplexed	CDII Mamani			
21	DB6	I(C)/O	Data Bus	C165 mode:	Data/Address Bus separate	CPU, Memory			
22	DB7	I(C)/O							
23	MODE	1			separated; Ready Signal ultiplexed, fixed Timing	Configuration Pin			
0.4	ALE / AS	1(0)	Address Latch Enable	C32 mode: C165 mode:	ALE '0' (2K Byte RAM)	ODU			
24	AB11	I(C)	Address Bus 11 (Asynchronous Intel and Synchronous Motorola Mode; 4K Byte RAM)			CPU			
25	AB9	I	Address Bus	C32 Mode: C165 Mode:	<log>0 Address Bus</log>	CPU, Memory			
26	TXD	0	Serial Transmit Po	PROFIBUS Interface					
27	RTS	0	Request to Send		PROFIBUS Interface				
28	vss								
29	AB8	I(C)	Address Bus	C32 mode: C165 mode:	ʻ0' Address Bus	CPU, Memory			

Pin	Signal Name	In/Out	Description	Source / Destination
30	RXD	I(C)	Serial Receive Port	PROFIBUS Interface
31	AB7	I(C)	Address Due	CDU Marsani
32	AB6	I(C)	Address Bus	CPU, Memory
33	XCTS	I(C)	Clear to Send: '0' = send enable	FSK Modem
34	XTEST0	I(C)	Pin must be connected to VDD.	
35	XTEST1	I(C)	Pin must be connected to VDD.	
36	RESET	I(CS)	Connect Reset Input with CPU's port pin.	
37	AB4	I(C)	Address Bus	CPU, Memory
38	vss			
39	VDD			
40	AB3	I(C)		
41	AB2	I(C)		
42	AB5	I(C)	Address Bus	CPU, Memory
43	AB1	I(C)		
44	AB0	I(C)		

Figure 3-1: Pin Assignment

Notes: All signals that begin with X.. are LOW active.

C32-Mode means 'Synchronous Intel Mode' and C165-Mode means 'Asynchronous Intel Mode'.

VDD = +5 VVSS = 0 V

Input Levels:

I(C): CMOS

I (CS): CMOS, Schmitt-Trigger CMOS, pulldown TTL, Schmitt-Trigger

4K Byte RAM extension

Beginning with Step B of the VPC3+ the communication RAM has been extended to 4K Byte, whereas Step A only has 2K Byte. To access the entire 4K Byte RAM in VPC3+C an additional address signal AB11 is required. Which pin is assigned to A11 depends on the Processor Interface Mode used (see Figure 3-2). Due to compatibility reasons the pin which is now assigned to A11 was unused in Step A for the certain Interface Mode.

Processor Interface Mode	Pin	Signal Name
Synchronous Intel Mode	1	xcs
Asynchronous Intel Mode	24	ALE/AS
Asynchronous Motorola Mode	2	XWR/E_CLOCK
Synchronous Motorola Mode	24	ALE/AS

Figure 3-2 : Pin assignment for AB11

The 4K Byte RAM extension must be enabled in Mode Register 2 (see section 5.1.3). By default the 4K Byte mode is disabled.

3.2 Pinout

VPC3+C has a 44-pin PQFP housing with the following pinout:

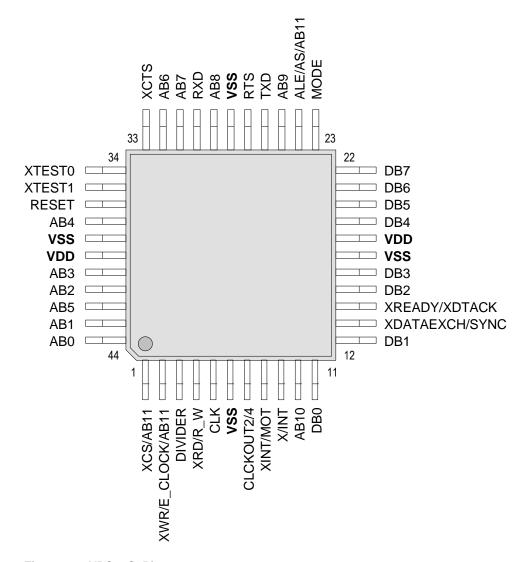


Figure 3-3: VPC3+C Pinout

For details about package outline and dimensions see section 10.8.

Notes:

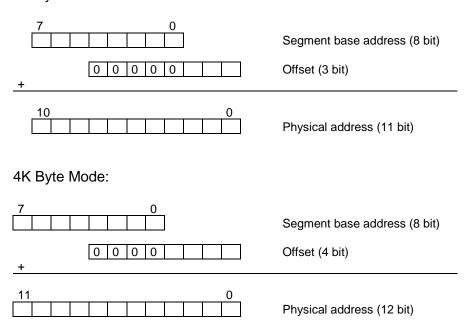
4.1 Overview

The internal Control Parameters are located in the first 21 addresses. The latches/registers either come from the internal controller or influence the controller. Certain cells are read- or write-only. The internal working cells, which are not accessible by the user, are located in RAM at the same address locations.

The Organizational Parameters are located in RAM beginning with address 16H. The entire buffer structure (for the DP-SAPs) is based on these pa-In addition, general parameter data (Station_Address, Ident_Number, etc.) and status information (Global_Control command, etc.) are also stored in these cells.

Corresponding to the parameter setting of the Organizational Parameters, the user-generated buffers are located beginning with address 40H. All buffers or lists must begin at segment addresses (8 bytes segmentation for 2K Byte mode, 16 bytes segmentation for 4K Byte mode).

Address		Function				
000H : 015H	Control Parame (latches/registe		Internal working cells			
016H : 03FH	Organizational	Parameters (42 bytes)				
040H :	DP-buffers:	Data in (3)* Data out (3)** Diagnosis data(2) Parameter data (1) Configuration data (2) Auxiliary buffers (2) SSA-buffer (1)				
7FFH (FFFH)	DP-V1-buffer: DP-V2-buffer:	SAP-List (1) Indication / Response bu DXB out (3)**** DXB-buffers (2) CS-buffers (1)	ffers ***			


Figure 4-1: Memory Table

- Data in means input data from DP-Slave to DP-Master
- Data out means output data from DP-Master to DP-Slave
- number of buffers depends on the entries in the SAP-List
- DXB out means input data from another DP-Slave (slave-to-slave communication)

Segment 0 Segment 1 Segment 2 8/16 bit segment addresses (pointer to the buffers) Segment 254 Segment 255

Building of the physical buffer address:

2K Byte Mode:

4.2 Control Parameters (Latches/Registers)

These cells can be either read-only or write-only. In the Motorola Mode the VPC3+C carries out 'address swapping' for an access to the address locations 00H - 07H (word registers). That is, the VPC3+C internally generates an even address from an odd address and vice-versa.

Add Intel	ress Mot.	Name	Bit No.	Significance (Read Access!)		
00H	01H	Int-Req-Reg	70	Significance (Nead Access:)		
01H	00H	Int-Reg-Reg	158			
02H	03H	Int-Reg	70	Interrupt Controller Register		
03H	02H	Int-Reg	158			
04H	05H	Status-Reg	70			
05H	04H	Status-Reg	158	Status Register		
06H	07H	Mode-Reg 0	70			
07H	06H	Mode-Reg 0	158	Mode Register 0		
08		Din_Buffer_SM	70	Buffer assignment of the DP_Din_Buffer_State_Machine		
09	Н	New_Din_Buffer_Cmd	10	The user makes a new DP Din_Buf available in the N state.		
OA	Л Н	Dout_Buffer_SM	70	Buffer assignment of the DP_Dout_Buffer_State_Machine		
0E	ВН	Next_Dout_Buffer_Cmd	30	The user fetches the last DP Dout_Buf from the N state		
00	Н	Diag_Buffer_SM	30	Buffer assignment for the DP_Diag_Buffer_State_Machine		
00	Н	New_Diag_Buffer_Cmd	10	The user makes a new DP Diag_Buf available to the VPC3+C.		
0E	ΞH	User_Prm_Data_Okay	10	The user positively acknowledges the user parameter setting data of a Set_(Ext_)Prm telegram.		
OF	0FH User_Prm_Data_Not_Oka		ay 10	The user negatively acknowledges the user parameter setting data of a Set_(Ext_)Prm telegram.		
10	10H User_Cfg_Data_Okay		10	The user positively acknowledges the configuration data of a Chk_Cfg telegram.		
11H		User_Cfg_Data_Not_Oka		The user negatively acknowledges the configuration data of a Chk_Cfg telegram.		
12H		DXBout_Buffer_SM	70	Buffer assignment of the DXBout_Buffer_State_Machine		
13H		Next_DXBout_Buffer_Cm		The user fetches the last DXBout Buf from the N state		
14H		SSA_Buffer_Free_Cmd		The user has fetched the data from the SSA_Buf and enables the buffer again.		
15	iΗ	Mode-Reg 1	70			

Figure 4-2: Assignment of the Internal Parameter-Latches for READ

Address Intel Mot.		Name	Bit No.	Significance (Write Access!)			
	1			Significance (Write Access:)			
00H	01H	Int-Req-Reg	70				
01H	00H	Int-Req_Reg	158				
02H	03H	Int-Ack-Reg	70	Interrupt-Controller-Register			
03H	02H	Int-Ack-Reg	158	Interrupt-Controller-register			
04H	05H	Int-Mask-Reg	70				
05H	04H	Int-Mask-Reg	158				
06H	07H	Mode-Reg0	70	Cotting parameters for individual hits			
07H	06H	Mode-Reg0	158	Setting parameters for individual bits			
30	ЗН	Mode-Reg1-S					
09	ЭH	Mode-Reg1-R 70					
OA	λH	WD_BAUD_CONTROL_V	√al 70	Square-root value for baud rate monitoring			
OE	ЗН	minT _{SDR} _Val 70		minT _{SDR} time			
00	CH	Mode-Reg2 7		Mode Register 2			
00	ЭH	Sync_PW_Reg		Sync Pulse Width Register			
OE	ĒΗ	Control_Command_Reg	70	Control_Command value for comparison with SYNCH telegram			
OF	FH	Group_Select_Reg	70	Group_Select value for comparison with SYNCH telegram			
10	ΡΗ	Reserved					
11H		Neserveu					
12	2H	Mode-Reg3	70	Mode Register 3			
13	ЗН						
14	1H	Reserved					
15	5H						

Figure 4-3: Assignment of the Internal Parameter-Latches for WRITE

4.3 Organizational Parameters (RAM)

The user stores the organizational parameters in the RAM under the specified addresses. These parameters can be written and read.

A -J 1						
Address Intel Mot.		Name	Bit No.	Significance		
16	SH .	R_TS_Adr		Setup Station_Address of the VPC3+C		
17	7H	SAP_List_Ptr		Pointer to a RAM address which is preset with FFh or to SAP-List		
18H	19H	R_User_WD_Value	70	In DP_Mode an internal 16-bit watchdog		
19H	18H	R_User_WD_Value	158	timer monitors the user.		
1/	λΗ	R_Len_Dout_Buf		Length of the 3 Dout_Buf		
1E	ЗН	R_Dout_Buf_Ptr1		Segment base address of Dout_Buf 1		
10	CH	R_Dout_Buf_Ptr2		Segment base address of Dout_Buf 2		
10	ЭH	R_Dout_Buf_Ptr3		Segment base address of Dout_Buf 3		
1E	ΞH	R_Len_Din_Buf		Length of the 3 Din_Buf		
1 F	-H	R_Din_Buf_Ptr1		Segment base address of Din_Buf 1		
20)H	R_Din_Buf_Ptr2		Segment base address of Din_Buf 2		
21	IH	R_Din_Buf_Ptr3		Segment base address of Din_Buf 3		
22	2H	R_Len_DXBout_Buf		Length of the 3 DXBout_Buf		
23	ВН	R_DXBout_Buf_Ptr1		Segment base address of DXBout_Buf 1		
24	ŧН	R_Len Diag_Buf1		Length of Diag_Buf 1		
25	5H	R_Len Diag_Buf2		Length of Diag_Buf 2		
26	6H	R_Diag_Buf_Ptr1		Segment base address of Diag_Buf 1		
27	′H	R_Diag_Buf_Ptr2		Segment base address of Diag_Buf 2		
28	вн	R_Len_Cntrl_Buf1		Length of Aux_Buf 1 and the corresponding control buffer, for example SSA_Buf, Prm_Buf, Cfg_Buf, Read_Cfg_Buf		
29	ЭН	R_Len_Cntrl_Buf2		Length of Aux_Buf 2 and the corresponding control buffer, for example SSA_Buf, Prm_Buf, Cfg_Buf, Read_Cfg_Buf		
2AH		R_Aux_Buf_Sel		Bit array; defines the assignment of the Aux_Buf 1 and 2 to the control buffers SSA_Buf, Prm_Buf, Cfg_Buf		
2E	2BH R_Aux_Bu			Segment base address of Aux_Buf 1		
20	CH	R_Aux_Buf_Ptr2		Segment base address of Aux_Buf 2		
2DH		R_Len_SSA_Data		Length of the input data in the Set_Slave_Address_Buf		
28	ΞH	R_SSA_Buf_Ptr		Segment base address of the Set_Slave_Address_Buf		
2FH		R_Len_Prm_Data		Length of the input data in the Prm_Buf		

Address Intel Mot.	Name Bit No.	Significance			
30H	R_Prm_Buf_Ptr	Segment base address of the Prm_Buf			
31H	R_Len_Cfg_Data	Length of the input data in the Cfg_Buf			
32H	R_Cfg_Buf_Ptr	Segment base address of the Cfg_Buf			
33H	R_Len_Read_Cfg_Data	Length of the input data in the Read_Cfg_Buf			
34H	R_Read_Cfg_Buf_Ptr	Segment base address of the Read_Cfg_Buf			
35H	R_Len_DXB_Link_Buf	Length of the DXB_Linktable			
36H	R_DXB_Link_Buf_Ptr	Segment base address of the DXB_Link_Buf			
37H	R_Len_DXB_Status_Buf	Length of the DXB_Status			
38H	R_DXB_Status_Buf_Ptr	Segment base address of the DXB_Status_Buf			
39H	R_Real_No_Add_Change	This parameter specifies whether the Station_Address may be changed again later.			
ЗАН	R_Ident_Low	The user sets the parameters for the Ident_Number_Low value.			
3ВН	R_Ident_High	The user sets the parameters for the Ident_Number_High value.			
3СН	R_GC_Command	The Control_Command of Global_Control last received			
3DH	R_Len_Spec_Prm_Buf	If parameters are set for the Spec_Prm_Buffer_Mode (see Mode Register 0), this cell defines the length of the Prm_Buf.			
3EH	R_DXBout_Buf_Ptr2	Segment base address of DXBout_Buf 2			
3FH	R_DXBout_Buf_Ptr3	Segment base address of DXBout_Buf 3			

Figure 4-4: Assignment of the Organizational Parameters

5.1 Mode Registers

In the VPC3+C parameter bits that access the controller directly or which the controller directly sets are combined in three Mode Registers (0, 1, 2 and 3).

5.1.1 Mode Register 0

Setting parameters for Mode Register 0 may take place in the Offline state only (for example, after power-on). The VPC3+C may not exit the Offline state until Mode Register 0, all Control and Organizational Parameters are loaded (START_VPC3 = 1 in Mode Register 1).

Address	Bit Position		Bit Position				Designation		
Address	7	6	5	4	3	2	1	0	Designation
06H (Intel)	Freeze_ Supported	Sync_ Supported	Early_Rdy	Int_Pol	CS_ Supported	WD_Base	Dis_Stop_ Control	Dis_Start_ Control	Mode Reg 0 7 0 See below for coding

Address			Designation						
Address	15	14	13	12	11	10	9	8	Designation
07H (Intel)	Reserved	PrmCmd_ Supported	Spec_Clear_ Mode *)	Spec_Prm_ Buf_Mode **)	Set_Ext_Prm _Supported	User_Time_ Base	EOI_Time_ Base	DP_Mode	Mode Reg 0 15 8 See below for coding

^{*)} If Spec_Clear_Mode = 1 (Fail Safe Mode) the VPC3+C will accept Data_Exchange telegrams without any output data (data unit length = 0) in the state DATA-EXCH. The reaction to the outputs can be parameterized in the parameterization telegram.

^{**)} When a large number of parameters have to be transmitted from the DP-Master to the DP-Slave, the Aux-Buffer 1/2 must have the same length as the Parameter-Buffer. Sometimes this could reach the limit of the available memory in the VPC3+C. When Spec_Prm_Buf_Mode = 1 the parameterization data are processed directly in this special buffer and the Aux-Buffers can be held compact.

	Mode Register 0, Low-Byte, Address 06H (Intel):
bit 7 rw-0	Freeze_Supported: Freeze_Mode support 0 = Freeze_Mode is not supported. 1 = Freeze_Mode is supported
bit 6 rw-0	Sync_Supported: Sync_Mode support 0 = Sync_Mode is not supported. 1 = Sync_Mode is supported.
bit 5 rw-0	 Early_Rdy: Early Ready 0 = Normal Ready: Ready is generated when data is valid (write) or when data has been accepted (read). 1 = Ready is generated one clock pulse earlier
bit 4 rw-0	INT_Pol: Interrupt Polarity0 = The interrupt output is low-active.1 = The interrupt output is high-active.
bit 3 rw-0	CS_Supported: Enable Clock Synchronization 0 = Clock Synchronization is disabled (default) 1 = Clock Synchronization is enabled
bit 2 rw-0	WD_Base: Watchdog Time Base 0 = Watchdog time base is 10 ms (default state) 1 = Watchdog time base is 1 ms
bit 1 rw-0	Dis_Stop_Control: Disable Stopbit Control 0 = Stop bit monitoring is enabled. 1 = Stop bit monitoring is switched off Set_Prm telegram overwrites this memory cell in the DP_Mode. (Refer to the user specific data.)
bit 0 rw-0	Dis_Start_Control: Disable Startbit Control 0 = Monitoring the following start bit is enabled. 1 = Monitoring the following start bit is switched off Set_Prm telegram overwrites this memory cell in the DP_Mode. (Refer to the user specific data.)

Figure 5-1: Coding of Mode Register 0, Low-Byte

Copyright © profichip GmbH 2014

Figure 5-2: Coding of Mode Register 0, High-Byte

5.1.2 Mode Register 1

Some control bits must be changed during operation. These control bits are combined in Mode Register 1 and can be set independently of each other (Mode-Reg_1_S) or can be reset independently of each other (Mode-Reg_1_R). Separate addresses are used for setting and resetting. A logical '1' must be written to the bit position to be set or reset.

For example, to set START_VPC3 write a '1' to address 08H, in order to reset this bit, write a '1' to address 09H.

Address			Designation						
Audress	7	6	5	4	3	2	1	0	Designation
08H	Reserved	Reserved	Res_ User_WD	En_Change_ Cfg_Buffer	User_LEAVE- MASTER	Go_Offline	EOI	START_ VPC3	Mode-Reg_1_S 70
09H	Reserved	Reserved	Res_ User_WD	En_Change_ Cfg_Buffer	User_LEAVE- MASTER	Go_Offline	EOI	START_ VPC3	Mode-Reg_1_R 70 See below for coding

	Mode Register 1, Set, Address 08H:
bit 7 rw-0	Reserved
bit 6 rw-0	Reserved
bit 5 rw-0	Res_User_WD: Resetting the User_WD_Timer 1 = VPC3+C sets the User_WD_Timer to the parameterized value
bit 4 rw-0	 En_Change_Cfg_Buffer: Enabling buffer exchange (Config-Buffer for Read_Config-Buffer) 0 = With User_Cfg_Data_Okay_Cmd, the Config-Buffer may not be exchanged for the Read_Config-Buffer. 1 = With User_Cfg_Data_Okay_Cmd, the Config-Buffer must be exchanged for the Read_Config-Buffer.
bit 3 rw-0	User_LEAVE-MASTER. Request to the DP_SM to go to WAIT-PRM. 1 = The user causes the DP_SM to go to WAIT-PRM. After this action, VPC3+ sets User_LEAVE-MASTER to '0' again.
bit 2 rw-0	Go_Offline: Going into the Offline state 1 = After the current request ends, VPC3+C goes to the Offline state and sets Go_Offline to '0' again.
bit 1 rw-0	EOI: End-of-Interrupt 1 = VPC3+C disables the interrupt output and sets EOI to '0' again.
bit 0 rw-0	Start_VPC3: Exiting the Offline state 1 = VPC3+C exits offline and goes to Passive_Idle In addition the Idle Timer and Watchdog Timer are started and 'Go_Offline = 0' is set

Figure 5-3: Coding of Mode Register 1

5.1.3 Mode Register 2

Setting parameters for Mode Register 2 may take place in the Offline State only (like Mode Register 0).

Address			Designation						
Address	7	6	5	4	3	2	1	0	Designation
	0	0	0	0	0	0	0	1	Reset Value
0CH	4kB_Mode	No_Check_ Prm_Reserved	SYNC_Pol	SYNC_Ena	DX_Int_Port	DX_Int_Mode	No_Check_ GC_Reserved	GC_Int_Mode	Mode Reg 2 7 0

	Mode Register 2, Address 0CH:
bit 7 w-0	4KB_Mode: size of internal RAM 0 = 2K Byte RAM (default). 1 = 4K Byte RAM
bit 6 w-0	No_Check_Prm_Reserved: disables checking of the reserved bits in DPV1_Status_2/3 of Set_Prm telegram 0 = reserved bits of a Set_Prm telegram are checked (default). 1 = reserved bits of a Set_Prm telegram are not checked.
bit 5 w-0	SYNC_Pol: polarity of SYNC pulse (for Isochron Mode only) 0 = negative polarity of SYNC pulse (default) 1 = positive polarity of SYNC pulse
bit 4 w-0	SYNC_Ena: enables generation of SYNC pulse (for Isochron Mode only) 0 = SYNC pulse generation is disabled (default) 1 = SYNC pulse generation is enabled
bit 3 w-0	 DX_Int_Port: Port mode for DX_Out interrupt (ignored if SYNC_Ena set) 0 = DX_Out interrupt is not assigned to port DATAEXCH (default). 1 = DX_Out Interrupt (synchronized to SYNCH telegram) is assigned to port DATAEXCH.
bit 2 w-0	DX_Int_Mode: Mode of DX_out interrupt 0 = DX_Out interrupt is only generated, if Len_Dout_Buf is unequal 0 (default). 1 = DX_Out interrupt is generated after every Data_Exchange telegram
bit 1 w-0	No_Check_GC_Reserved: Disables checking of the reserved bits in Global_Control telegram 0 = reserved bits of a Global_Control telegram are checked (default). 1 = reserved bits of a Global_Control telegram are not checked.
bit 0 w-1	GC_Int_Mode: Controls generation of New_GC_Command interrupt 0 = New_GC_Command interrupt is only generated, if a changed Global_Control telegram is received 1 = New_GC_Command interrupt is generated after every Global_Control telegram (default)

Figure 5-4: Coding of Mode Register 2

Setting parameters for Mode Register 3 may take place in the Offline State only (like Mode Register 0).

Address			Designation						
Audress	7	7 6 5 4 3 2						0	Designation
12H			Rese	erved			DX_Int_Mode _2	GC_Int_Mode_Ext	Mode Reg 3 7 0

	Mode Register 3, Address 12H:
bit 7 w-0	Reserved
bit 6 w-0	Reserved
bit 5 w-0	Reserved
bit 4 w-0	Reserved
bit 3 w-0	Reserved
bit 2 w-0	Reserved
bit 1 w-0	 DX_Int_Mode_2: Mode of DX_out interrupt 0 = DX_Out interrupt is generated after each Data_Exch telegram 1 = DX_Out interrupt is only generated, if received data is not equal to current data in DX_Out buffer of user
bit 0 w-0	GC_Int_Mode_Ext: extend GC_Int_Mode, works only if GC_Int_Mode=0 0 = GC Interrupt is only generated, if changed GC telegram is received 1 = GC Interrupt is only generated, if GC telegram with changed Control_Command is received

Figure 5-5: Coding of Mode Register 3

5.2 Status Register

The Status Register shows the current VPC3+C status and can be read only.

Address		Decignation							
Audress	7	6	5	4	3	2	1	0	Designation
04H (Intel)	WD_	State	DP_S	State	served	g_Flag	erved	Offline/ Passive_Idle	Status-Reg 70
	1	0	1	0	Reser	Diag	Resen	Off	See below for coding

Address			Designation						
Audress	15	14	13	12	11	10	9	8	Designation
05H (Intel)	,	VPC3+	Release)		Baud	Status-Reg 158		
	3	2	1	0	3	2	1	0	See below for coding

	Status Register,Low-Byte, Address 04H (Intel):
bit 7,6 r-00	WD_State 10: State of the Watchdog State Machine 00 = BAUD_SEARCH state 01 = BAUD_CONTROL state 10 = DP_CONTROL state 11 = Not possible
bit 5,4 r-00	DP_State 10: State of the DP State Machine 00 = WAIT-PRM state 01 = WAIT-CFG state 10 = DATA-EXCH state 11 = Not possible
bit 3 r-0	Reserved
bit 2 r-0	Diag_Flag: Status of the Diagnosis-Buffer 0 = The Diagnosis-Buffer had been fetched by the DP-Master. 1 = The Diagnosis-Buffer had not been fetched by the DP-Master yet.
bit 1 r-0	Reserved
bit 0 r-0	Offline/Passive-Idle: Offline-/Passive_Idle state 0 = VPC3+C is in Offline. 1 = VPC3+C is in Passive_Idle.

Figure 5-6: Status Register, Low-Byte

```
Status Register, High-Byte, Address 05H (Intel):
bit 15-12 VPC3+-Release 3..0: Release number for VPC3+
r-1100
         0000 = Step A
         1011 = Step B
1100 = Step C
         1101 = Step D
         Rest = Not possible
bit 11-8
         Baud Rate 3..0: The baud rate found by VPC3+C
r-1111
         0000 = 12,00 \text{ Mbit/s}
         0001 =
                    6,00 Mbit/s
                    3,00 Mbit/s
         0010 =
         0011 =
                    1,50 Mbit/s
         0100 = 500,00 Kbit/s
         0101 = 187,50 Kbit/s
         0110 = 93,75 Kbit/s
         0111 =
                   45,45 Kbit/s
         1000 =
                   19,20 Kbit/s
                    9,60 Kbit/s
         1001 =
          1111 = after reset and during baud rate search
         Rest = not possible
```

Figure 5-7: Status Register, High-Byte

5.3 Interrupt Controller

The processor is informed about indication messages and various error events via the interrupt controller. Up to a total of 16 events are stored in the interrupt controller. The events are summed up to a common interrupt output. The controller does not have a prioritization level and does not provide an interrupt vector (not 8259A compatible!).

The controller consists of an Interrupt Request Register (IRR), an Interrupt Mask Register (IMR), an Interrupt Register (IR) and an Interrupt Acknowledge Register (IAR).

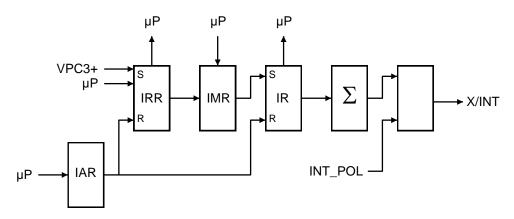


Figure 5-8: Block Diagram of Interrupt Controller

Each event is stored in the IRR. Individual events can be suppressed via the IMR. The input in the IRR is independent of the interrupt masks. Events that are not masked in the IMR set the corresponding IR bit and generate the X/INT interrupt via a sum network. The user can set each event in the IRR for debugging.

Each interrupt event that was processed by the microcontroller must be deleted via the IAR (except for New_(Ext_)Prm_Data and New_Cfg_Data). A logical '1' must be written on the specific bit position. If a new event and an acknowledge from the previous event are present at the IRR at the same time, the event remains stored. If the microcontroller enables a mask subsequently, it must be ensured that no prior IRR input is present. To be on the safe side, the position in the IRR must be deleted prior to the enabling of the mask.

Before leaving the interrupt routine, the microprocessor must set the 'end of interrupt bit' (EOI = 1) in Mode Register 1. The interrupt output is switched to inactive with this edge change. If another event occurs, the interrupt output is not activated again until the interrupt inactive time of at least 1 µs or 1 ms expires. This interrupt inactive time can be set via EOI_Time_Base in Mode Register 0. This makes it possible to enter the interrupt routine again when an edge-triggered interrupt input is used.

The polarity of the interrupt output is parameterized via the Int_Pol bit in Mode Register 0. After hardware reset, the output is low-active.

5.3.1 Interrupt Request Register

Address			Designation						
Address	7	6	5	4	3	2	1	0	Designation
00H (Intel)	DXB_Out	New_Ext_ Prm_Data	DXB_Link_ Error	User_Timer_ Clock	WD_DP_ CONTROL_Timeout	Baud_Rate_ Detect	Go/Leave_ DATA-EXCH	MAC_Reset / Clock_Sync	Int-Req-Reg 7 0 See below for coding

Address			Designation						
Address	15	14	13	12	11	10	9	8	Designation
01H (Intel)	FDL_Ind	Poll_End_Ind	DX_Out	Diag_Buffer_ Changed	New_Prm_ Data	New_Cfg_ Data	New_SSA_ Data	New_GC Command	Int-Req-Reg 15 8 See below for coding

	Interrupt-Request-Register, Low-Byte, Address 00H (Intel):				
bit 7 rw-0	DXB_Out: VPC3+C has received a DXB telegram and made the new output data available in the 'N' buffer.				
bit 6 rw-0	New_Ext_Prm_Data: The VPC3+C has received a Set_Ext_Prm telegram and made the data available in the Parameter-Buffer.				
bit 5 rw-0	DXB_Link_Error: The Watchdog cycle is elapsed and at least one Publisher-Subscriber connection breaks down.				
bit 4 rw-0	User_Timer_Clock: The time base for the User_Timer_Clocks is run out (1 / 10ms).				
bit 3 rw-0	WD_DP_CONTROL_Timeout: The watchdog timer expired in the DP_CONTROL state.				
bit 2 rw-0	Baud_Rate_Detect: The VPC3+C has left the BAUD_SEARCH state and found a baud rate.				
bit 1 rw-0	Go/Leave_DATA-EXCH: The DP_SM has entered or exited the DATA-EXCH state.				
bit 0 rw-0	MAC_Reset (used if CS_Supported=0): After processing the current request, the VPC3+D has entered the Offline state (by setting the Go_Offline bit).				
	Clock_Sync (used if CS_Supported=1):				
	The VPC3+D has received a Clock_Value telegram or an error occurs. Further differentiation is made in the Clock_Sync-Buffer.				

Figure 5-9: Interrupt-Request-Register, Low-Byte

	Interrupt Request Register 0, High-Byte, Address 01H (Intel):					
bit 15 rw-0	FDL_Ind: The VPC3+C has received an acyclic service request and made the data available in an Indication-Buffer.					
bit 14 rw-0	Poll_End_Ind: The VPC3+C have send the response to an acyclic service.					
bit 13 rw-0	DX_Out: The VPC3+C have received a Data_Exchange telegram and made the new output data available in the 'N' buffer.					
bit 12 rw-0	Diag_Buffer_Changed: Due to the request made by New_Diag_Cmd, the VPC3+C exchanged the Diagnosis-Buffers and made the old buffer available to the user again.					
bit 11 rw-0	New_Prm_Data: The VPC3+C have received a Set_Prm telegram and made the data available in the Parameter-Buffer.					
bit 10 rw-0	New_Cfg_Data: The VPC3+C have received a Chk_Cfg telegram and made the data available in the Config-Buffer.					
bit 9 rw-0	New_SSA_Data: The VPC3+C have received a Set_Slave_Add telegram and made the data available in the Set_Slave_Add-Buffer.					
bit 8 rw-0	New_GC_Command: The VPC3+C have received a Global_Control telegram and stored the Control_Command in the R_GC_Command RAM cell.					

Figure 5-10: Interrupt Request Register, High-Byte

5.3.2 Interrupt Acknowledge / Mask Register

The other interrupt controller registers are assigned in the bit positions like the Interrupt Request Register.

Address	Register		Reset state	Assignment
02H / 03H	Interrupt Register (IR)	Readable only	All bits cleared	
04H / 05H	Interrupt Mask Register (IMR)	Writeable, can be changed during operation	All bits set	1 = Mask is set and the interrupt is disabled 0 = Mask is cleared and the interrupt is enabled
02H / 03H	Interrupt Acknowledge Register (IAR)	Writeable, can be changed during operation	All bits cleared	1 = Interrupt is acknowledged and the IRR bit is cleared 0 = IRR bit remains unchanged

Figure 5-11: Interrupt Acknowledge / Mask Register

The New_(Ext_)Prm_Data, New_Cfg_Data interrupts cannot be acknowledged via the Interrupt Acknowledge Register. The relevant state machines clear these interrupts through the user acknowledgements (for example, User_Prm_Data_Okay_etc.).

5.4 Watchdog Timer

The VPC3+C is able to identify the baud rate automatically. The state machine is in the BAUD_SEARCH state after each RESET and also after the Watchdog (WD) Timer has expired in the BAUD_CONTROL state.

Figure 5-12: Watchdog State Machine (WD_SM)

5.4.1 Automatic Baud Rate Identification

The VPC3+C starts searching for the transmission rate using the highest baud rate. If no SD1 telegram, SD2 telegram, or SD3 telegram was received completely and without errors during the monitoring time, the search continues using the next lower baud rate.

After identifying the correct baud rate, the VPC3+C switches to the BAUD_CONTROL state and observes the baud rate. The monitoring time can be parameterized (WD_BAUD_CONTROL_Val). The watchdog uses a clock of 100 Hz (10 ms). Each telegram to its own Station_Address received with no errors resets the Watchdog. If the timer expires, the VPC3+C switches to the BAUD_SEARCH state again.

5.4.2 Baud Rate Monitoring

The detected baud rate is permanently monitored in BAUD_CONTROL. The Watchdog is triggered by each error-free telegram to its own Station_Address. The monitoring time results from multiplying twice WD_BAUD_CONTROL_Val (user sets this parameter) by the time base (10 ms). If the timer expires, WD_SM again goes to BAUD_SEARCH. If the user uses the DP protocol (DP_Mode = 1, see Mode Register 0), the watchdog is used for the DP_CONTROL state, after a Set_Prm telegram was received with an enabled response time monitoring (WD_On = 1). The watchdog timer remains in the baud rate monitoring state when the master monitoring is disabled (WD_On = 0). The DP_SM is not reset when the timer expires in the state BAUD_CONTROL. That is, the DP-Slave remains in the DATA-EXCH state, for example.

5.4.3 Response Time Monitoring

The DP_CONTROL state serves as the response time monitoring of the DP-Master (Diag_Master_Add). The used monitoring time results from multiplying both watchdog factors and then multiplying this result with the time base (1 ms or 10 ms):

T_{WD} = WD_Base * WD_Fact_1 * WD_Fact_2 (See byte 7 of the Set_Prm telegram.)

The user can load the two watchdog factors (WD_Fact_1 and WD_Fact_2) and the time base that represents a measurement for the monitoring time via the Set_Prm telegram with any value between 1 and 255.

EXCEPTION:

The WD_Fact_1 = WD_Fact_2 = 1 setting is not allowed. The circuit does not check this setting.

A monitoring time between 2 ms and 650 s - independent of the baud rate - can be implemented with the allowed watchdog factors.

If the monitoring time expires, the VPC3+C goes to BAUD_CONTROL state again and generates the WD_DP_CONTROL_Timeout interrupt. In addition, the DP State Machine is reset, that is, it generates the reset states of the buffer management. This operation mode is recommended for the most applications.

If another DP-Master takes over the VPC3+C, the Watchdog State Machine either branches to BAUD_CONTROL (WD_On = 0) or to DP_CONTROL (WD_On = 1).

34

6.1 DP Buffer Structure

The DP_Mode is enabled in the VPC3+C with 'DP_Mode = 1' (see Mode Register 0). In this mode, the following SAPs are permanently reserved:

Default SAP: Write and Read data (Data_Exchange)
SAP 53: Sending extended parameter setting data (Set_Ext_Prm)
SAP 55: Changing the Station Address (Set Slave Add)

SAP 56: Reading the inputs (RD_Input)
SAP 57: Reading the outputs (RD_Output)

SAP 58: Control commands to the DP-Slave (Global_Control)

SAP 59: Reading configuration data (Get_Cfg)
SAP 60: Reading diagnosis information (Slave_Diag)
SAP 61: Sending parameter setting data (Set_Prm)
Checking configuration data (Chk_Cfg)

The DP-Slave protocol is completely integrated in the VPC3+C and is handled independently. The user must correspondingly parameterize the ASIC and process and acknowledge received messages. All SAPs are always enabled except the Default SAP, SAP 56, SAP 57 and SAP 58. The remaining SAPs are not enabled until the DP_SM goes into the DATA-EXCH state. The user can disable SAP 55 to not permit changing the Station_Address. The corresponding buffer pointer R_SSA_Buf_Ptr must be set to '00H' for this purpose.

The DP_SAP Buffer Structure is shown in Figure 6-1. The user configures all buffers (length and buffer start) in the Offline state. During operation, the buffer configuration must not be changed, except for the length of the Dout/Din-Buffers.

The user may still adapt these buffers in the WAIT-CFG state after the configuration telegram (Chk_Cfg). Only the same configuration may be accepted in the DATA-EXCH state.

The buffer structure is divided into the data buffers, Diagnosis-Buffers and the control buffers. Both the output data and the input data have three buffers available with the same length. These buffers are working as changing buffers. One buffer is assigned to the data transfer (D) and one buffer is assigned to the user (U). The third buffer is either in a next state (N) or a free state (F). One of the two states is always unoccupied.

For diagnosis two Diagnosis-Buffers, that can have different lengths, are available. One Diagnosis-Buffer (D) is always assigned to the VPC3+C for sending. The other Diagnosis-Buffer (U) belongs to the user for preprocessing new diagnosis data.

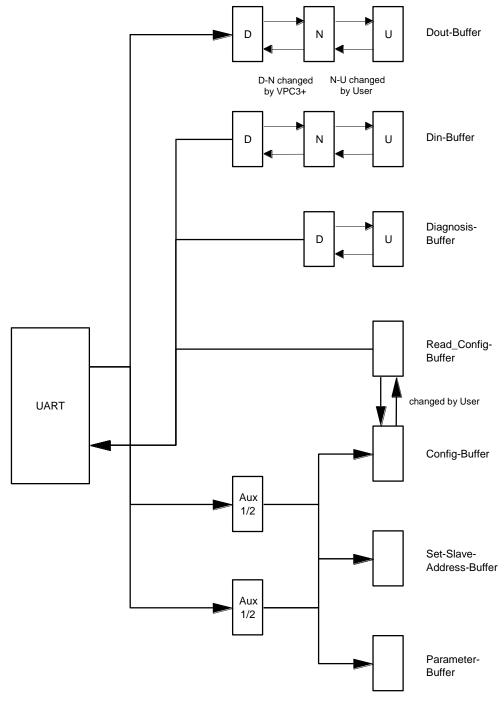


Figure 6-1: DP_SAP Buffer Structure

The VPC3+C first stores the parameter telegrams (Set_Slave_Add and Set_(Ext_)Prm) and the configuration telegram (Chk_Cfg) in Aux-Buffer 1 or Aux-Buffer 2. If the telegrams are error-free, data is exchanged with the corresponding target buffer (Set_Slave_Add-Buffer, Parameter-Buffer and Config-Buffer). Each of the buffers to be exchanged must have the same length. In the R_Aux_Buf_Sel parameter cell (see Figure 6-2) the user defines which Aux_buffers are to be used for the telegrams mentioned

above. The Aux-Buffer 1 must always be available, Aux-Buffer 2 is optional. If the data profiles of these DP telegrams are very different (for example the length of the Set_Prm telegram is significantly larger than the length of the other telegrams) it is suggested to make an Aux-Buffer 2 available (R_Aux_Buf_Sel: Set_Prm = 1) for this telegram. The other telegrams are then read via Aux-Buffer 1 (R_Aux_Buf_Sel: Set_Slave_Adr = 0, Chk_Cfg = 0). If the buffers are too small, the VPC3+C responds with "no resources" (RR)!

Address			Designation						
Address	7	6	Designation						
2AH	0	0	0	0	0	Set_ Slave_Add	Chk_Cfg	Set_Prm	R_Aux_Buf_Sel See below for coding

	R_Aux_Buf_Sel, Address 2AH:
bit 7-3	Don't Care: Read as '0'
bit 2	Set_Slave_Adr: Set Slave Address 0 = Aux-Buffer 1 1 = Aux-Buffer 2
bit 1	Chk_Cfg: Check Configuration 0 = Aux-Buffer 1 1 = Aux-Buffer 2
bit 0	Set_Prm: Set (Extended) Parameter 0 = Aux-Buffer 1 1 = Aux-Buffer 2

Figure 6-2: Aux-Buffer Management

The user makes the configuration data (Get_Cfg) available in the Read_Config-Buffer for reading. The Read_Config-Buffer must have the same length as the Config-Buffer.

The RD_Input telegram is serviced from the Din-buffer in the 'D' state and the RD_Output telegram is serviced from the Dout-Buffer in the 'U' state.

All buffer pointers are 8-bit segment addresses, because the VPC3+C have only 8-bit address registers internally. For a RAM access, VPC3+C adds an 8-bit offset address to the segment address shifted by 4 bits (result: 12-bit physical address) in case of 4K Byte RAM or shifted by 3 bits (result: 11- bit physical address) in case of 2K Byte RAM. With regard to the buffer start addresses, this specification results either in a 16-byte or in an 8-byte granularity.

6.2 Description of the DP Services

6.2.1 Set_Slave_Add (SAP 55)

Sequence for the Set_Slave_Add service

The user can disable this service by setting 'R_SSA_Puf_Ptr = 00H'. The Station_Address must then be determined, for example, by reading a DIP-switch or an EEPROM and writing the address in the RAM cell R TS Adr.

There must be a non-volatile memory available (for example an external EEPROM) to support this service. It must be possible to store the Station_Address and the Real_No_Add_Change ('True' = FFH) parameter in this EEPROM. After each restart caused by a power failure, the user must read these values from the EEPROM again and write them to the R TS Adr und R Real No Add Change RAM registers.

If SAP55 is enabled and the Set_Slave_Add telegram is received correctly, the VPC3+C enters the pure data in the Aux-Buffer 1/2, exchanges the Aux-Buffer 1/2 for the Set_Slave_Add-Buffer, stores the entered data length in R_Len_SSA_Data, generates the New_SSA_Data interrupt and internally stores the New_Slave_Add as Station_Address and the No_Add_Chg as Real_No_Add_Chg. The user does not need to transfer this changed parameter to the VPC3+C again. After reading the buffer, the user generates the SSA_Buffer_Free_Cmd (read operation on address 14H). This makes the VPC3+C ready again to receive another Set_Slave_Add telegram (for example, from a different DP-Master).

The VPC3+C reacts automatically to errors.

Addross	Address Bit Position											
Address	7	6	5	4	3	2	1	0	Designation			
14H	0	0	0	0	0	0	0	0	SSA_Buf_ Free_Cmd			

	SSA_Buf_Free_Cmd, Address 14H:
bit 7-0	Don't care: Read as '0'

Figure 6-3: Coding of SSA_Buffer_Free_Command

Structure of the Set_Slave_Add Telegram

The net data are stored as follows in the SSA buffer:

Disto			Designation							
Byte	7	6	5	4	3	2	1	0	Designation	
0									New_Slave_Address	
1									Ident_Number_High	
2									Ident_Number_Low	
3									No_Add_Chg	
4 : 243									Rem_Slave_Data additional application specific data	

Figure 6-4: Structure of the Set_Slave_Add Telegram

6.2.2 Set _Prm (SAP 61)

Parameter Data Structure

The VPC3+C evaluates the first seven data bytes (without User_Prm_Data), or the first eight data bytes (with User_Prm_Data). The first seven bytes are specified according to the standard. The eighth byte is used for VPC3+C specific characteristics. The additional bytes are available to the application.

If a PROFIBUS DP extension shall be used, the bytes 7-9 are called DPV1_Status and must be coded as described in section 7, "PROFIBUS DP Extensions". Generally it is recommended to start the User Prm Data first with byte 10.

Duto				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	1	0	Designation
0	Lock_ Req	Unlock_ Req	Sync_ Req	Freeze_ Req	MD_On	Reserved	Reserved	Reserved	Station Status
1									WD_Fact_1
2									WD_Fact_2
3									$minT_{SDR}$
4									Ident_Number_High
5									Ident_Number_Low
6									Group_Ident
7	DPV1_ Enable	Fail_Safe	Publisher_ Enable	0	0	WD_Base	Dis_Stop_ Control	Dis_Start_ Control	Spec_User_Prm_Byte /DPV1_Status_1
8									DPV1_Status_2
9									DPV1_Status_3
10 : 243									User_Prm_Data

Figure 6-5: Format of the Set_Prm Telegram

	Spec_User_Prm_Byte / DPV1_Status_1:
bit 7	DPV1_Enable:
	0 = DP-V1 extensions disabled (default) 1 = DP-V1 extensions enabled
bit 6	Fail_Safe:
	0 = Fail Safe mode disabled (default) 1 = Fail Safe mode enabled
bit 5	Publisher_Enable:
	0 = Publisher function disabled (default) 1 = Publisher function enabled
bit 4-3	Reserved: To be parameterized with '0'
bit 2	WD_Base: Watchdog Time Base
	0 = Watchdog time base is 10 ms (default) 1 = Watchdog time base is 1 ms
bit 1	Dis_Stop_Control: Disable Stop bit Control
	0 = Stop bit monitoring in the receiver is enabled (default)1 = Stop bit monitoring in the receiver is disabled
bit 0	Dis_Start_Control: Disable Start bit Control
	0 = Start bit monitoring in the receiver is enabled (default)1 = Start bit monitoring in the receiver is disabled

Figure 6-6: Spec_User_Prm_Byte / DPV1_Status_1

It is recommended \underline{not} to use the DPV1_Status bytes (bytes 7-9) for user parameter data.

Parameter Data Processing Sequence

In the case of a positive validation of more than seven data bytes, the VPC3+C carries out the following reaction:

The VPC3+C exchanges Aux-Buffer 1/2 (all data bytes are entered here) for the Parameter-Buffer, stores the input data length in R_Len_Prm_Data and triggers the New_Prm_Data interrupt. The user must then check the User_Prm_Data and either reply with User_Prm_Data_Okay_Cmd or with User_Prm_Data_Not_Okay_Cmd. The entire telegram is entered in this buffer. The user parameter data are stored beginning with data byte 8, or with byte 10 if DPV1_Status bytes used.

The user response (User_Prm_Data_Okay_Cmd or User_Prm_Data_Not_Okay_Cmd) clears the New_Prm_Data interrupt. The user cannot acknowledge the New_Prm_Data interrupt in the IAR register.

With the User_Prm_Data_Not_Okay_Cmd message, relevant diagnosis bits are set and the DP_SM branches to WAIT-PRM.

The User_Prm_Data_Okay and User_Prm_Data_Not_Okay acknow-ledgements are read accesses to defined registers with the relevant signals:

• User_Prm_Finished: No additional parameter telegram is present.

Prm_Conflict: An additional parameter telegram is present,

processing again

Not Allowed: Access not permitted in the current bus state

Address				Bit Po	sition				Designation
Audiess	7	6	5	4	3	2	1	0	Designation
0EH	0	0	0	0	0	0	Ų	U.	User_Prm_
UEH	O	0	O	U	U	U	Ψ.	•	Data_Okay
							0	0	User_Prm_Finished
							0	1	Prm_Conflict
							1	1	Not_Allowed

Copyright © profichip GmbH 2014

Address	Address Bit Position										
Address	7	6	5	4	3	2	1	0	Designation		
OEH	0	0	0	0	0	_	U.	U U	User_Prm_		
0FH	0	O	0	0	0	0	ψ.	ψ	Data_Not_Okay		
							0	0	User_Prm_Finished		
							0	1	Prm_Conflict		
							1	1	Not_Allowed		

Figure 6-7: Coding of User_Prm_(Not)_Okay_Cmd

If another Set_Prm telegram is supposed to be received in the meantime, the signal Prm_Conflict is returned for the positive or negative acknowledgement of the first Set_Prm telegram. Then the user must repeat the validation because the VPC3+C has made a new Parameter-Buffer available.

6.2.3 Chk_Cfg (SAP 62)

The user checks the correctness of the configuration data. After receiving an error-free Chk_Cfg telegram, the VPC3+C exchanges the Aux-Buffer 1/2 (all data bytes are entered here) for the Config-Buffer, stores the input data length in R_Len_Cfg_Data and generates the New_Cfg_Data interrupt.

Then the user has to check the User_Config_Data and either respond with User_Cfg_Data_Okay_Cmd or with User_Cfg_Data_Not_Okay_Cmd. The pure data is entered in the buffer in the format of the standard.

The user response (User_Cfg_Data_Okay_Cmd or the User_Cfg_Data_Not_Okay_Cmd response) clears the New_Cfg_Data interrupt. The user cannot acknowledge the New_Cfg_Data in the IAR register.

If an incorrect configuration is reported, several diagnosis bits are changed and the VPC3+C branches to state WAIT-PRM.

For a correct configuration, the transition to DATA-EXCH takes place immediately, if trigger counters for the parameter telegrams and configuration telegrams are at 0. When entering into DATA-EXCH, the VPC3+C also generates the Go/Leave_DATA-EXCH Interrupt.

If the received configuration data from the Config-Buffer is supposed to result in a change to the Read_Config-Buffer (contains the data for the Get_Cfg telegram), the user have to make the new Read_Config data available in the Read_Config-Buffer before the User_Cfg_Data_Okay_Cmd acknowledgement, that is the user has to copy the new configuration data into the Read_Config-Buffer.

During acknowledgement, the user receives information about whether there is a conflict or not. If another Chk_Cfg telegram was supposed to be

received in the meantime, the user receives the Cfg_Conflict signal during the positive or negative acknowledgement of the first Chk_Cfg telegram. Then the user must repeat the validation, because the VPC3+C have made a new Config-Buffer available.

The User_Cfg_Data_Okay_Cmd and User_Cfg_Data_Not_Okay_Cmd acknowledgements are read accesses to defined memory cells with the relevant Not_Allowed, User_Cfg_Finished, or Cfg_Conflict signals.

If the New_Prm_Data and New_Cfg_Data are supposed to be present simultaneously during start-up, the user must maintain the Set_Prm and then the Chk_Cfg acknowledgement sequence.

Address				Designation					
Address	7	6	5	4	3	2	1	0	Designation
10H	0	0	0	0	0	0	Ų	\downarrow	User_Cfg_
ТОП	O	U	O	U	O	U	Ψ.	•	User_Cfg_ Data_Okay
							0	0	User_Cfg_Finished
							0	1	Cfg_Conflict
							1	1	Not_Allowed

Address		Designation							
Audress	7	6	5	4	3	2	1	0	Designation
11H	0	0	0	0	0	0	$\downarrow \downarrow$	\downarrow	User_Cfg_
ПП	O	0	0	U	0	U	•	Ψ.	User_Cfg_ Data_Not_Okay
							0	0	User_Cfg_Finished
							0	1	Cfg_Conflict
							1	1	Not_Allowed

Figure 6-8: Coding of User_Cfg_(Not)_Okay_Cmd

6.2.4 Slave_Diag (SAP 60)

Diagnosis Processing Sequence

Two buffers are available for diagnosis. These two buffers can have different lengths. One Diagnosis-Buffer, which is sent on a diagnosis request, is always assigned to the VPC3+C. The user can pre-process new diagnosis data in the other buffer parallel. If the new diagnosis data are to be sent, the user issues the New_Diag_Cmd to make the request to exchange the Diagnosis-Buffers. The user receives confirmation of the buffer exchange with the Diag_Buffer_Changed interrupt.

When the buffers are exchanged, the internal Diag_Flag is also set. For an activated Diag_Flag, the VPC3+C responds during the next

Data_Exchange with high-priority response data. That signals the DP-Master that new diagnosis data are present at the DP-Slave. The DP-Master then fetches the new diagnosis data with a Slave_Diag telegram. Then the Diag_Flag is cleared again. However, if the user signals 'Diag.Stat_Diag = 1' (that is static diagnosis, see the structure of the Diagnosis-Buffer), the Diag_Flag still remains activated after the relevant DP-Master has fetched the diagnosis. The user can poll the Diag_Flag in the Status Register to find out whether the DP-Master has already fetched the diagnosis data before the old data is exchanged for the new data.

According to IEC 61158, Static Diagnosis should only be used during start-up.

Status coding for the diagnosis buffers is stored in the Diag_Buffer_SM control parameter. The user can read this cell with the possible codings for both buffers: User, VPC3+, or VPC3+_Send_Mode.

Address		Designation							
Address	7	6	5	Designation					
0CH	0	0	0	0	Diag_Buf2		Diag_Buf1		Diag_Buffer_SM

	Diag_Buffer_SM, Address 0CH:
bit 7-4	Don't care: Read as '0'
bit 3-2	Diag_Buf2: Assignment of Diagnosis Buffer 2 00 = Nil 01 = User 10 = VPC3+ 11 = VPC3_Send_Mode
bit 1-0	Diag_Buf1: Assignment of Diagnosis Buffer 1 00 = Nil 01 = User 10 = VPC3+ 11 = VPC3_Send_Mode

Figure 6-9: Diagnosis Buffer Assignment

The New_Diag_Cmd is also a read access to a defined control parameter indicating which Diagnosis-Buffer belongs to the user after the exchange or whether both buffers are currently assigned to the VPC3+C (No_Buffer, Diag_Buf1, Diag_Buf2).

VPC3+C User Manual

Address				Designation					
Address	7 6 5 4 3 2 1 0					0	Designation		
0DH	0	0	0	0	0	0	\downarrow	U U	New_Diag_
0DH	U	U	U		U	U		>	New_Diag_ Buffer_Cmd
							0	0	No_Buffer
							0	1	Diag_Buf1
							1	0	Diag_Buf2

Figure 6-10: Coding of New_Diag_Cmd

Byte				Bit Po	sition				Designation
Буге	7	6	5	4	3	2	1	0	Designation
0						Ext_Diag_ Overflow	Stat_Diag	Ext_Diag	
1									
2									
3									
4									
5									
6 : n					Ext_Diag_Data (n = max. 243)				

Figure 6-11: Format of the Diagnosis-Buffer

The Ext_Diag_Data must be entered into the buffers after the VPC3+C internal diagnosis data. Three different formats are possible here: device-related, ID-related and port-related. If PROFIBUS DP extensions shall be used, the device-related diagnosis is substituted by alarm and status messages. In addition to the Ext_Diag_Data, the buffer length also includes the VPC3+C diagnosis bytes (R_Len_Diag_Buf 1, R_Len_Diag_Buf 2).

6.2.5 Write_Read_Data / Data_Exchange (Default_SAP)

Writing Outputs

The VPC3+C writes the received output data in the 'D' buffer. After an error-free receipt, the VPC3+C shifts the newly filled buffer from 'D' to 'N'. In addition, the DX_Out interrupt is generated. The user now fetches the current output data from 'N'. The buffer changes from 'N' to 'U' with the Next_Dout_Buffer_Cmd, so that the current data can be transmitted to the application by a RD_Output request from a DP-Master.

If the user's evaluation cycle time is shorter than the bus cycle time, the user does not find any new buffers with the next Next_Dout_Buffer_Cmd in 'N'. Therefore, the buffer exchange is omitted. At a 12 Mbit/s baud rate, it is more likely, however, that the user's evaluation cycle time is larger than the bus cycle time. This makes new output data available in 'N' several times before the user fetches the next buffer. It is guaranteed, however, that the user receives the data last received.

For power-on, LEAVE-MASTER and the Global_Control telegram with 'Clear_Data = 1', the VPC3+C deletes the 'D' buffer and then shifts it to 'N'. This also takes place during power-up (entering the WAIT-PRM state). If the user fetches this buffer, he receives U_Buffer_Cleared during the Next_Dout_Buffer_Cmd. If the user is supposed to enlarge the output data buffer after the Chk_Cfg telegram, the user must delete this deviation in the 'N' buffer himself (possible only during the start-up phase in the WAIT-CFG state).

If 'Diag.Sync_Mode = 1', the 'D' buffer is filled but not exchanged with the Data_Exchange telegram. It is exchanged at the next Sync or Unsync command sent by Global_Control telegram.

Address				Designation					
Address	7	6	5	Designation					
0AH	F		ι	J	١	٧	D		Dout_Buffer_SM

	Dout_Buffer_SM, Address 0AH:
bit 7-6	F: Assignment of the F-Buffer 00 = Nil 01 = Dout_Buf_Ptr1 10 = Dout_Buf_Ptr2 11 = Dout_Buf_Ptr3
bit 5-4	U: Assignment of the U-Buffer 00 = Nil 01 = Dout_Buf_Ptr1 10 = Dout_Buf_Ptr2 11 = Dout_Buf_Ptr3
bit 3-2	N: Assignment of the N-Buffer 00 = Nil 01 = Dout_Buf_Ptr1 10 = Dout_Buf_Ptr2 11 = Dout_Buf_Ptr3
bit 1-0	D: Assignment of the D-Buffer 00 = Nil 01 = Dout_Buf_Ptr1 10 = Dout_Buf_Ptr2 11 = Dout_Buf_Ptr3

Figure 6-12: Dout-Buffer Management

When reading the Next_Dout_Buffer_Cmd the user gets the information which buffer ('U' buffer) belongs to the user after the change, or whether a change has taken place at all.

Address			Designation						
Audiess	7	6	5	4	3	2	1	0	Designation
ОВН	0	0	0	0	U_Buffer_ Cleared	State_U_ Buffer	Ind_U_	Buffer	Next_Dout_ Buf_Cmd See coding below

	Next_Dout_Buf_Cmd, Address 0BH:
bit 7-4	Don't care: Read as '0'
bit 3	U_Buffer_Cleared: User-Buffer-Cleared Flag
	0 = U buffer contains data 1 = U buffer is cleared
bit 2	State_U_Buffer: State of the User-Buffer
	0 = no new U buffer 1 = new U buffer
bit 1-0	Ind_U_Buffer: Indicated User-Buffer
	01 = Dout_Buf_Ptr1 10 = Dout_Buf_Ptr2 11 = Dout_Buf_Ptr3

Figure 6-13: Coding of Next_Dout_Buf_Cmd

The user must clear the 'U' buffer during initialization so that defined (cleared) data can be sent for a RD_Output telegram before the first data cycle.

Reading Inputs

The VPC3+C sends the input data from the 'D' buffer. Prior to sending, the VPC3+C fetches the Din-Buffer from 'N' to 'D'. If no new buffer is present in 'N', there is no change.

The user makes the new data available in 'U'. With the New_Din_Buffer_Cmd, the buffer changes from 'U' to 'N'. If the user's preparation cycle time is shorter than the bus cycle time, not all new input data are sent, but just the most current. At a 12 Mbit/s baud rate, it is more likely, however, that the user's preparation cycle time is larger than the bus cycle time. Then the VPC3+C sends the same data several times in succession.

During start-up, the VPC3+C does not go to DATA-EXCH before all parameter telegrams and configuration telegrams have been acknowledged.

If 'Diag.Freeze_Mode = 1', there is no buffer change prior to sending.

The user can read the status of the state machine cell with the following codings for the four states: Nil, Dout_Buf_Ptr1, Dout_Buf_Ptr2 and Dout_Buf_Ptr3. The pointer for the current data is in the 'N' state.

Address				Designation					
Address	7	7 6 5 4 3 2 1 0 Designation							
08H	F	=	ι	J	١	١	D		Din_Buffer_SM

	Din_Buffer_SM, Address 08H:
bit 7-6	F: Assignment of the F-Buffer 00 = Nil 01 = Din_Buf_Ptr1 10 = Din_Buf_Ptr2 11 = Din_Buf_Ptr3
bit 5-4	U: Assignment of the U-Buffer 00 = Nil 01 = Din_Buf_Ptr1 10 = Din_Buf_Ptr2 11 = Din_Buf_Ptr3
bit 3-2	N: Assignment of the N-Buffer 00 = Nil 01 = Din_Buf_Ptr1 10 = Din_Buf_Ptr2 11 = Din_Buf_Ptr3
bit 1-0	D: Assignment of the D-Buffer 00 = Nil 01 = Din_Buf_Ptr1 10 = Din_Buf_Ptr2 11 = Din_Buf_Ptr3

Figure 6-14: Din-Buffer Management

Address				Designation						
Address	7	6	5	4	3	2	1	0	Designation	
09H	0	0	0	0	0	0	\downarrow	\downarrow	New_Din_Buf_Cmd	
							0	1	Din_Buf_Ptr1	
							1	0	Din_Buf_Ptr2	
							1	1	Din_Buf_Ptr3	

Figure 6-15: Coding of New_Din_Buf_Cmd

User_Watchdog_Timer

After start-up (DATA-EXCH state), it is possible that the VPC3+C continually answers Data_Exchange telegrams without the user fetching the received Dout-Buffers or making new Din-Buffers available. If the user processor 'hangs up' the DP-Master would not receive this information. Therefore, a User_Watchdog_Timer is implemented in the VPC3+C.

This User_WD_Timer is an internal 16-bit RAM cell that is started from a user parameterized value R_User_WD_Value and is decremented by the VPC3+C with each received Data_Exchange telegram. If the timer reaches the value 0000H, the VPC3+C goes to the WAIT-PRM state and the DP_SM carries out a LEAVE-MASTER. The user must cyclically set this timer to its start value. Therefore, 'Res_User_WD = 1' must be set in Mode Register 1. Upon receipt of the next Data_Exchange telegram, the VPC3+C again loads the User_WD_Timer to the parameterized value R_User_WD_Value and sets 'Res_User_WD = 0' (Mode Register 1). During power-up, the user must also set 'Res_User_WD = 1', so that the User_WD_Timer is set to its parameterized value.

6.2.6 Global Control (SAP 58)

50

The VPC3+C processes the Global_Control telegrams like already described.

The first byte of a valid Global_Control is stored in the R_GC_Command RAM cell. The second telegram byte (Group_Select) is processed internally.

The interrupt behavior regarding to the reception of a Global_Control telegram can be configured via bit 8 of Mode Register 2. The VPC3+C either generates the New_GC_Control interrupt after each receipt of a Global_Control telegram (default) or just in case if the Global_Control differs from the previous one.

The R_GC_Command RAM cell is not initialized by the VPC3+C. Therefore the cell has to be preset with 00H during power-up. The user can read and evaluate this cell.

In order to use Sync and Freeze, these functions must be enabled in the Mode Register 0.

Address			Dosignation						
Audress	7	6	5	4	3	2	1	0	Designation
ЗСН	Reserved	Reserved	Sync	Unsync	Freeze	Unfreeze	Clear_Data	Reserved	R_GC_ Command See below for coding

	R_GC_Command, Address 3CH:
bit 7-6	Reserved
bit 5	Sync:
	The output data transferred with a Data_Exchange telegram is changed from 'D' to 'N'. The following transferred output data is kept in 'D' until the next Sync command is given.
bit 4	Unsync:
	The Unsync command cancels the Sync command.
bit 3	Freeze:
	The input data is fetched from 'N' to 'D' and "frozen". New input data is not fetched again until the DP-Master sends the next Freeze command.
bit 2	Unfreeze:
	The Unfreeze command cancels the Freeze command.
bit 1	Clear_Data:
	With this command, the output data is deleted in 'D' and is changed to 'N'.
bit 0	Reserved

Figure 6-16: Format of the Global_Control Telegram

6.2.7 RD_Input (SAP 56)

The VPC3+C fetches the input data like it does for the Data_Exchange telegram. Prior to sending, 'N' is shifted to 'D', if new input data are available in 'N'. For 'Diag.Freeze_Mode = 1', there is no buffer change.

6.2.8 RD_Output (SAP 57)

The VPC3+C fetches the output data from the Dout_Buffer in 'U'. The user must preset the output data with '0' during start-up so that no invalid data can be sent here. If there is a buffer change from 'N' to 'U' (through the

Next_Dout_Buffer_Cmd) between the first call-up and the repetition, the new output data is sent during the repetition.

6.2.9 **Get_Cfg (SAP 59)**

The user makes the configuration data available in the Read_Config-Buffer. For a change in the configuration after the Chk_Cfg telegram, the user writes the changed data in the Config-Buffer, sets 'En_Change_Cfg_buffer = 1' (see Mode Register 1) and the VPC3+C then exchanges the Config-Buffer for the Read_Config-Buffer. If there is a change in the configuration data during operation (for example, for a modular DP systems), the user must return with Go_Offline command (see Mode Register 1) to WAIT-PRM.

Set_(Ext_)Prm (SAP 53 / SAP 61) 7.1

The PROFIBUS DP extensions require three bytes to implement the new parameterization function. The bits of the Spec User Prm Byte are included.

Buto				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	1	0	Designation
0 : 6									
7	DPV1_ Enable	Fail_Safe	Publisher_ Enable	Reserved	Reserved	WD_Base	Dis_Stop_ Control	Dis_Start_ Control	DPV1_Status_1
8	Enable_ Pull_Plug_Alam	Enable_ Process_Alarm	Enable_ Diagnostic_Alarm	Enable_ Manufacturer_ Specific_Alarm	Enable_ Status_Alarm	Enable_ Update_Alarm	0	Chk_Cfg_Mode	DPV1_Status_2
9	PrmCmd	0	0	lsoM_Req	Prm_ Structure	Alarm_Mode		de	DPV1_Status_3
10 : 243									User_Prm_Data

Figure 7-1: Set_Prm with DPV1_Status bytes

If the extensions are used, the bit Spec_Clear_Mode in Mode Register 0 serves as Fail Safe required. Therefore it is used for a comparison with the bit Fail_Safe in parameter telegram. Whether the DP-Master supports the Fail_Safe mode or not is indicated by the telegram bit. If the DP-Slave requires Fail_Safe but the DP-Master doesn't the Prm_Fault bit is set.

If the VPC3+C should be used for DXB, IsoM or redundancy mode, the parameterization data must be packed in a Structured Prm Data block to distinguish between the User Prm Data. The bit Prm Structure indicates this.

If redundancy should be supported, the PrmCmd_Supported bit in Mode Register 0 must be set.

Duto			Designation						
Byte	7	6	5	4	3	2	1	0	Designation
0									Structured_Length
1									Structure_Typ
2									Slot_Number
3									Reserved
4 : 243									User_Prm_Data

Figure 7-2 : Format of the Structured_Prm_Data block

Additional to the Set_Prm telegram (SAP 61) a Set_Ext_Prm (SAP 53) telegram can be used for parameterization. This service is only available in state WAIT-CFG after the reception of a Set_Prm telegram and before the reception of a Chk_Cfg telegram. The new Set_Ext_Prm telegram simply consists of Structured Prm Data blocks.

The new service uses the same buffer handling as described by Set_Prm. By means of the New_Ext_Prm_Data interrupt the user can recognize which kind of telegram is entered in the Parameter-Buffer. Additional the SAP 53 must be activated by Set_Ext_Prm_Supported bit in Mode Register 0.

The Aux-Buffer for the Set_Ext_Prm is the same as the one for Set_Prm and has to be different from the Chk_Cfg Aux-Buffer. Furthermore the Spec_Prm_Buf_Mode in Mode Register 0 must not be used together with SAP 53.

7.2 PROFIBUS DP-V1

7.2.1 Acyclic Communication Relationships

The VPC3+C supports acyclic communication as described in the DP-V1 specification. Therefore a memory area is required which contains all SAPs needed for the communication. The user must do the initialization of this area (SAP-List) in Offline state. Each entry in the SAP-List consists of 7 bytes. The pointer at address 17H contains the segment base address of the first element of the SAP-List. The last element in the list is always indicated with FFH. If the SAP-List shall not be used, the first entry must be FFH, so the pointer at address 17H must point to a segment base address location that contains FFH.

The new communication features are enabled with DPV1_Enable in the Set_Prm telegram.

Copyright © profichip GmbH 2014

Duto					Designation				
Byte	7 6 5 4 3 2 1 0 Designati							Designation	
0	Response _Sent			SA	SAP_Number				
1									Request_SA
2									Request_SSAP
3									Service_Supported
4									Ind_Buf_Ptr[0]
5									Ind_Buf_Ptr[1]
6									Resp_Buf_Ptr

	SAP-List entry:
Byte 0	Response_Sent: Response-Buffer sent
	0 = no Response sent 1 = Response sent
	SAP_Number: 0 – 51
Byte 1	Request_SA: The source address of a request is compared with this value. At differences, the VPC3+C response with "no service activated" (RS). The default value for this entry is 7FH.
Byte 2	Request_SSAP: The source SAP of a request is compared with this value. At differences, the VPC3+C response with "no service activated" (RS). The default value for this entry is 7FH.
Byte 3	Service_Supported: Indicates the permitted FDL service. 00 = all FDL services allowed
Byte 4	Ind_Buf_Ptr[0]: pointer to Indication-Buffer 0
Byte 5	Ind_Buf_Ptr[1]: pointer to Indication-Buffer 1
Byte 6	Resp_Buf_Ptr: pointer to Response-Buffer

Figure 7-3: SAP-List entry

In addition an Indication- and Response-Buffer are needed. Each buffer consists of a 4-byte header for the buffer management and a data block of configurable length.

Duto			Designation						
Byte	7	6	5	4	3	2	1	0	Designation
0	USER	QNI	RESP	INUSE					Control
1									Max_Length
2									Length
3									Function Code

	SAP-List entry:									
Byte 0	Control: bits for buffer management									
	USER buffer assigned to user									
	IND indication data included in buffer									
	RESP response data included in buffer									
	INUSE buffer assigned to VPC3+C									
Byte 1	Max_Length: length of buffer									
Byte 2	Length: length of data included in buffer									
Byte 3	Function Code: function code of the telegram									

Figure 7-4: Buffer Header

Processing Sequence

A received telegram is compared with the values in the SAP-List. If this check is positive, the telegram is stored in an Indication-Buffer with the INUSE bit set. In case of any deviations the VPC3+C responses with "no service activated" (RS) or if no free buffer is available with "no resource" (RR). After finishing the processing of the incoming telegram, the INUSE bit is reset and the bits USER and IND are set by VPC3+C. Now the FDL_Ind interrupt is generated. Polling telegrams do not produce interrupts. The RESP bit indicates response data, provided by the user in the Response-Buffer. The Poll_End_Ind interrupt is set after the Response-Buffer is sent. Also bits RESP and USER are cleared.

DP-Master	PROFIBUS	DP-Slave
	Request to acyclic SAP ->	fill Indication-Buffer
	<- short acknowledgement (SC)	
	Polling telegram to acyclic SAP ->	process data
	<- short acknowledgement (SC)	process data
	:	
	:	
	:	update Response- Buffer
	Polling telegram to acyclic SAP ->	
	<- Response from acyclic	

Figure 7-5: acyclic communication sequence

VPC3+C	Firmware
set Request_SA / Request_SSA	
set INUSE in Control of Ind_Buf	
write data in Ind_Buf	
clear INUSE and set USER and IND in Control of set FDL_Ind interrupt	f Ind_Buf
·	clear FDL_Ind interrupt
	search for Ind_Buf with IND = 1
	read Ind_Buf
	clear IND in Control of Ind_Buf
	write Response in Resp_Buf
check on RESP = 1	set RESP in Control of Resp_Buf
read Resp Buf	
clear RESP and USER in Control of Resp_Buf set Response_Sent	
set Poll_End_Ind interrupt	
	clear Poll_End_Ind interrupt
	search for SAP with Response_Sent = 1 clear Response_Sent

Figure 7-6: FDL-Interface of VPC3+C (e.g. same Buffer for Indication and Response)

7.2.2 Diagnosis Model

The format of the device related diagnosis data depends on the GSD keyword DPV1_Slave in the GSD. If 'DPV1_Slave = 1', alarm and status messages are used in diagnosis telegrams. Status messages are required by the Data eXchange Broadcast service, for example. Alarm_Ack is used as the other acyclic services.

VPC3+C User Manual Revision 3.04 57

7.3 PROFIBUS DP-V2

7.3.1 DXB (Data eXchange Broadcast)

The DXB mechanism enables a fast slave-to-slave communication. A DP-Slave that holds input data significant for other DP-Slaves, works as a Publisher. The Publisher can handle a special kind of Data_Exchange request from the DP-Master and sends its answer as a broadcast telegram. Other DP-Slaves that are parameterized as Subscribers can monitor this telegram. A link is opened to the Publisher if the address of the Publisher is registered in the linktable of the Subscriber. If the link have been established correctly, the Subscriber can fetch the input data from the Publisher.

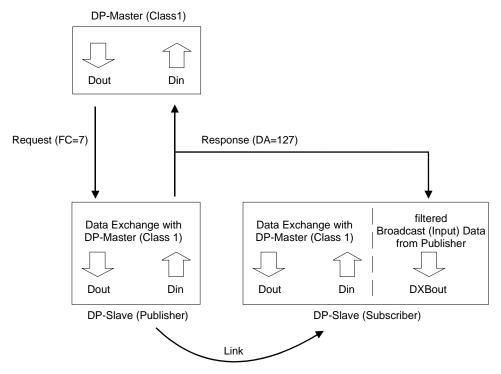


Figure 7-7: Overview DXB

The VPC3+C can handle a maximum of 29 links simultaneously.

Publisher

A Publisher is activated with 'Publisher_Enable = 1' in DPV1_Status_1. The time min T_{SDR} must be set to ' T_{ID1} = 37 t_{bit} + 2 T_{SET} + T_{QUI} '.

All Data_Exchange telegrams containing the function code 7 (Send and Request Data Multicast) are responded with destination address 127. If Publisher mode is not enabled, these requests are ignored.

Subscriber

A Subscriber requires information about the links to its Publishers. These settings are contained in a DXB Linktable or DXB Subscribertable and transferred via the Structured_Prm_Data in a Set_Prm or Set_Ext_Prm telegram. Each Structured_Prm_Data is treated like the User_Prm_Data and therefore evaluated by the user. From the received data the user must generate DXB_Link_Buf and DXB_Status_Buf entries. The watchdog must be enabled to make use of the monitoring mechanism. The user must check this.

Byte				Bit Po	sition				Designation
Dyte	7	6	5	4	3	2	1	0	Designation
0									Structured_Length
1	0	0	0	0	0	0	1	1	Structure_Type
2	0	0	0	0	0	0	0	0	Slot_Number
3	0	0	0	0	0	0	0	0	Reserved
4	0	0	0	0	0	0	0	1	Version
5									Publisher_Addr
6									Publisher_Length
7									Sample_Offset
8									Sample_Length
9 :									further link entries
120									

Figure 7-8: Format of the Structured_Prm_Data with DXB Linktable (specific link is grey scaled)

Duto				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	1	0	- Designation
0									Structured_Length
1	0	0	0	0	0	1	1	1	Structure_Type
2	0	0	0	0	0	0	0	0	Slot_Number
3	0	0	0	0	0	0	0	0	Reserved
4	0	0	0	0	0	0	0	1	Version
5									Publisher_Addr
6									Publisher_Length
7									Sample_Offset
8									Dest_Slot_Number
9									Offset_Data_Area
10									Sample_Length
11 : 120									further link entries

Figure 7-9: Format of the Structured_Prm_Data with DXB Subscribertable (specific link is grey scaled)

The user must copy the link entries of DXB Linktable or DXB Subscribertable, without Dest_Slot_Number and Offset_Data_Area, in the DXB_Link_Buf and set R_Len_DXB_Link_Buf. Also the user must enter the default status message in DXB_Status_Buf with the received links and write the appropriate values to R_Len_DXB_Status_Buf. After that, the parameterization interrupt can be acknowledged.

60

Byte				Bit Pos	sition				Designation
Буге	7	6	5	4	3	2	1	0	Designation
0	0	0			Block_	Leng	th		Header_Byte
1	1	0	0	0	0	0	1	1	Status_Type
2	0	0	0	0	0	0	0	0	Slot_Number
3	0	0	0	0	0	0	0	0	Status_Specifier
4									Publisher_Addr
5	Link_ Status	Link_ Error	0	0	0	0	0	Data_ Exist	Link_Status
6 : 61									further link entries

	Link_Status:
bit 7	Link_Status :
	1 = active, valid data receipt during last monitoring period0 = not active, no valid data receipt during last monitoring period (DEFAULT)
bit 6	Link_Error: 0 = no faulty Broadcast data receipt (DEFAULT) 1 = wrong length, error occurred by reception
bit 0	Data_Exist: 0 = no correct Broadcast data receipt during current monitoring period (DEFAULT) 1 = error free reception of Broadcast data during current monitoring period

Figure 7-10: DXB_Link_Status_Buf (specific link is grey scaled)

Processing Sequence

The VPC3+C processes DXBout-Buffers like the Dout-Buffers. The only difference is that the DXBout-Buffers are not cleared by the VPC3+C.

The VPC3+C writes the received and filtered broadcast data in the 'D' buffer. The buffer contains also the Publisher_Address and the Sample_Length. After error-free receipt, the VPC3+C shifts the newly filled buffer from 'D' to 'N'. In addition, the DXBout interrupt is generated. The user now fetches the current output data from 'N'. The buffer changes from 'N' to 'U' with the Next_DXBout_Buffer_Cmd.

Duto			Designation						
Byte	7	6	5	4	3	2	1	0	Designation
0									Publisher_Addr
1									Sample_Length
2 : 246									Sample_Data

Figure 7-11: DXBout-Buffer

When reading the Next_DXBout_buffer_Cmd the user gets the information which buffer ('U' buffer) is assigned to the user after the change, or whether a change has taken place at all.

Address				Designation					
Address	7	6	5	Designation					
12H	F	F U		J	١	٧	[)	DXBout_Buffer_SM

	DXBout_Buffer_SM, Address 0AH:
bit 7-6	F: Assignment of the F-Buffer 00 = Nil 01 = DXBout_Buf_Ptr1 10 = DXBout_Buf_Ptr2 11 = DXBout_Buf_Ptr3
bit 5-4	U: Assignment of the U-Buffer 00 = Nil 01 = DXBout_Buf_Ptr1 10 = DXBout_Buf_Ptr2 11 = DXBout_Buf_Ptr3
bit 3-2	N: Assignment of the N-Buffer 00 = Nil 01 = DXBout_Buf_Ptr1 10 = DXBout_Buf_Ptr2 11 = DXBout_Buf_Ptr3
bit 1-0	D: Assignment of the D-Buffer 00 = Nil 01 = DXBout_Buf_Ptr1 10 = DXBout_Buf_Ptr2 11 = DXBout_Buf_Ptr3

Figure 7-12: DXBout-Buffer Management

Address	Bit Position												
Audiess	7	6	5	4	3	2	1	0	Designation				
13H	0	0	0	0	0	State_U_ Buffer	Ind_U_	Buffer	Next_DXBout_ Buf_Cmd See coding below				

	Next_DXBout_Buf_Cmd, Address 0BH:
bit 7-3	Don't care: Read as '0'
bit 2	State_U_Buffer: State of the User-Buffer 0 = no new U buffer 1 = new U buffer
bit 1-0	Ind_U_Buffer: Indicated User-Buffer 01 = DXBout_Buf_Ptr1 10 = DXBout_Buf_Ptr2 11 = DXBout_Buf_Ptr3

Figure 7-13: Coding of Next_DXBout_Buf_Cmd

Monitoring

After receiving the DXB data the Link_Status in DXB_Status_Buf of the concerning Publisher is updated. In case of an error the bit Link_Error is set. If the processing is finished without errors, the bit Data_Exist is set.

In state DATA-EXCH the links are monitored in intervals defined by the parameterized watchdog time. After the monitoring time runs out, the VPC3+C evaluates the Link_Status of each Publisher and updates the bit Link Status. The timer restarts again automatically.

Event	Link_ Status	Link_ Error	Data_ Exist
valid DXB data receipt		0	1
faulty DXB data receipt	0	1	0
WD_Time elapsed AND Data_Exist = 1	1	0	0
WD_Time elapsed AND Link_Error = 1	0	0	0

Figure 7-14: Link_Status handling

To enable the monitoring of Publisher-Subscriber links the watchdog timer must be enabled in the Set_Prm telegram. The user must check this.

63

VPC3+C User Manual Revision 3.04

7.3.2 IsoM (Isochron Mode)

The IsoM synchronizes DP-Master, DP-Slave and DP-Cycle. The isochron cycle time starts with the transmission of the SYNCH telegram by the IsoM master. If the VPC3+C supports the IsoM, a synchronization signal at Pin 13 (XDATAEXCH/SYNC) is generated by each reception of a SYNCH telegram. The SYNCH telegram is a special coded Global_Control request.

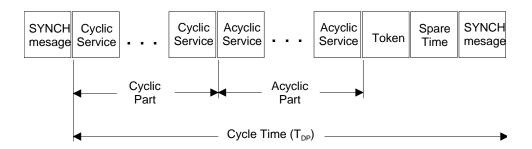


Figure 7-15: Telegram sequences in IsoM with one DP-Master (Class 1)

Two operation modes for cyclic synchronization are available in the VPC3+C:

- 1. Isochron Mode: Each SYNCH telegram causes an impulse on the SYNC output and a New_GC_Command interrupt.
- 2. Simple Sync Mode: A Data_Exchange telegram no longer causes a DX_Out interrupt immediately, rather the event is stored in a flag. By a following SYNCH message reception, the DX_Out interrupt and a synchronization signal are generated at the same time. Additionally a New_GC_Command interrupt is produced, as the SYNCH telegram behaves like a regular Global_Control telegram to the DP state machine. If no Data_Exchange telegram precedes the SYNCH telegram, only the New_GC_Command interrupt is generated.

Byte			В	it Posi	tion				Designation
Буге	7	6	5	4	3	2	1	0	Designation
0	0	0						0	Control_Command
1	Group_8 = 1								Group_Select

Figure 7-16: IsoM SYNCH telegram

Each Global_Control is compared with the values that can be adjusted in Control_Command_Reg (0Eh) and Group_Select_Reg (0Fh). If the values are equal a SYNCH telegram will be detected.

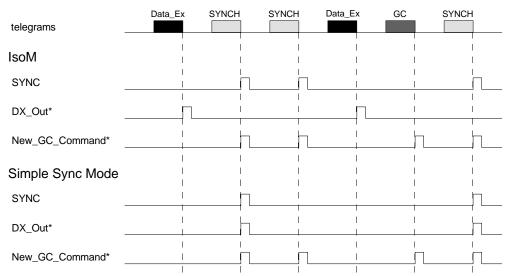


Figure 7-17: SYNC-signal and interrupts for synchronization modes (picture only shows the effects by reception of telegrams; time between telegrams is not equal)

Isochron Mode

To enable the Isochron Mode in the VPC3+C, bit SYNC_Ena in Mode Register 2 must be set. Additionally the Spec_Clear_Mode in Mode Register 0 must be set. The polarity of the SYNC signal can be adjusted with the SYNC_Pol bit. The register Sync_PW contains a multiplicator with the base of 1/12 μs to adjust the SYNC pulse width. Settings in the Set_Prm telegram are shown below.

The Structured_Prm_Data block IsoM (Structure_Type = 4) is also required for the application. If it is sent by Set_Prm telegram the bit Prm Structure must be set.

Durán				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	1	0	Designation
0			Sync_Req = 0	Freeze_Req = 0					Station_Status
1									WD_Fact_1
2									WD_Fact_2
3									minT _{SDR}
4									Ident_Number_High
5									Ident_Number_Low
6	$Group_8 = 0$								Group_Ident
7		Fail_Safe = 1							DPV1_Status_1
8									DPV1_Status_2
9				IsoM_Req = 1					DPV1_Status_3
10 : 246									User_Prm_Data

Figure 7-18: Format of Set_Prm telegram for IsoM

66

DP-Slave in a IsoM network

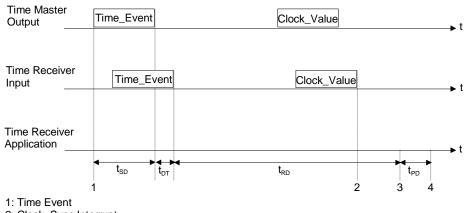
To enable cyclic synchronization via the 'Simple Sync Mode', the bit DX_Int_Port in Mode Register 2 have to be set. Bit SYNC_Ena must not be set. The settings of the pulse polarity are adjusted like described in the IsoM.

For the parameterization telegram the DP format is used. Though the DPV1_Status bytes 1-3 could be used as User_Prm_Data, it is generally recommended starting the User_Prm_Data at byte 10.

Buto				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	1	0	Designation
0			Sync_Req = depends on SYNCH-format	Freeze_Req = depends on SYNCH-format					Station_Status
1									WD_Fact_1
2									WD_Fact_2
3									minT _{SDR}
4									Ident_Number_High
5									Ident_Number_Low
6	Group_8 = 1								Group_Ident
7									DPV1_Status_1
8									DPV1_Status_2
9									DPV1_Status_3
10 : 246									User_Prm_Data

Figure 7-19: Format of Set_Prm for DP-Slave using isochrones cycles

In opposite to IsoM the DX_Out interrupt is generated first after the receipt of a SYNCH telegram. If no Data_Exchange telegram had been received before a SYNCH occurred, no synchronization signal is generated.



For this mechanism the interrupt controller ist used. Hence no signal will be generated, if the mask for DX_Out in the IMR is set. Since the synchronization signal is now the DX_Out interrupt, it remains until the interrupt acknowledge.

7.3.3 CS (Clock Synchronization)

The Clock Synchronization mechanism synchronizes the time between devices on a PROFIBUS segment. A time master is a DP-Master. The scheme used is a "backwards time based correction". The knowledge of when a special timer event message was broadcasted is subsequently used to calculate appropriate clock adjustments.

The synchronized time can be used for time stamp mechanism.

- 2: Clock_Sync Interrupt
- 3: read access Receive_Delay_Time
- 4: update system timer

Figure 7-20: clock synchronization mechanism

The clock synchronization sequence consists of two messages broadcasted by the time master. When the first message, called Time_Event, is received the VPC3+C starts the receive delay timer (t_{RD}). The time master then sends a second message, called Clock_Value, which contains the actual time when the Time_Event was sent plus the send delay time (t_{SD}). By receiption of the second message the Clock_Sync interrupt will be generated. To achieve the most accuracy the receive delay timer is running until the user reads the Clock_Sync-Buffer.

The VPC3+C only synchronizes the received telegrams, the system time management is done by the user. The user has also to account for the time after the receive delay timer has been read till the update of the system time (t_{PD}: process delay time).

The time for transmission delay (t_{DT} : CS_Delay_Time) and the Clock_Sync_Interval are communicated to the VPC3+C by a Structured_Prm_Data block. The CS_Delay_Time is used by the user to calculate the system time: t_S = Clock_Value_Time_Event + t_{DT} + t_{RD} + t_{PD}

Puto			Designation						
Byte	7	6	5	4	3	2	1	0	Designation
0									Structured_Length
1	0	0	0	0	1	0	0	0	Structure_Type
2	0	0	0	0	0	0	0	0	Slot_Number
3	0	0	0	0	0	0	0	0	Reserved
4 : 5									Clock_Sync_Interval Time Base 10 ms
6		•	CC Dolov Time						
:		F	CS Delay Time						
13			Bas	e is 1/(2	³²) Seco	onds			Can be omitted

Figure 7-21: Format of Structured_Prm_Data with Time AR

Byto				Bit Po	sition				Designation
Byte	7	6	5	4	3	2	Designation		
		Seco							
0	C	or since	Clock_Value_						
: 7		F	raction	Part of	Second	ls (2 ³¹ 0))		Time_Event
			Base	e is 1/(2	³²) Sec	onds			
		Seco	onds (2 ³	¹ 0) sin	ce 1.1.	1900 0:0	00,00		
8	C	or since	7.2.203	6 6:28:	16 if val	ue < 0x	9dff4400)	Clock_Value_
15		F	raction	Part of	Second	ls (2 ³¹ 0))		previous_TE
			Base	e is 1/(2	³²) Sec	onds			
16	С		Clock_Value_Status1						
17	ANH	SWT	reserviert	С	R	1 0 0 0 0	reservier	SYF	Clock_Value_Status2

Figure 7-22: Format of Clock_Value

Processing Sequence

The Clock_Sync_Interval is a time for monitoring and has to be written into the Clock_Sync-Buffer by the user. The Time Receiver state machine in the VPC3+C is started after this write access. The value for Clock_Sync_Interval is locked until the next LEAVE-MASTER or a new parameterization occurs. In addition it can be unlocked if the user set the Stop_Clock_Sync in Command byte.

Following to a clock synchronization sequence the Clock_Sync interrupt will be asserted. Further information is contained in the Status byte. If an overflow of the Receive_Delay_Timer occurs the Status byte will be cleared. The VPC3+C cannot write new data to the Clock_Sync-Buffer until the user has acknowledged the Clock_Sync interrupt. Hence to ensure no new data overwrites the buffer, the user should read out the buffer before acknowledging the interrupt.

The base address of the Clock_Sync-Buffer depends on the memory mode:

2K Byte mode: 7E0H 4K Byte mode: FE0H

Deste			Designation						
Byte	7	6	5	4	3	2	1	0	Designation
0			rese	rved		Clock_Sync_ Violation	Set_Time	Status	
1		r	eserved	d		lgnore_Cyclic_ State_Machine	Stop_ Clock_Sync	Command	
2	С			CV			rese	rved	Clock_Value_Status1
3	ANH	SWT	reserved	С	R	rese	rved	SYF	Clock_Value_Status2
4 : 11	0	r since	action P	6 6:28:1 art of S	6 if valu	ue < 9D (2 ³² -1	FF4400	Н	Clock_Value_ Time_Event
			Base	•	³²) Sec	onds			
12 : 15					ase 1 µs				Receive_Delay_Time
		Secon	ds (2 ³² -	1 0) s	ince 1.1	.1900 0	:00,00		
16	0	r since	7.2.203	Н	Clock_Value_				
23		Fra	action P Base		previous_TE				
24				(2 ¹⁶ -	1 0)				Clock_Sync_Interval
25			Т	ime Ba	se 10 m	ıs			Glock_Syric_interval

Copyright © profichip GmbH 2014

	Clock_Sync-Buffer
Status bit 7-2 r-000000	Reserved
Status bit 1 r-0	Clock_Sync_Violation: Wrong telegram or Time period of 2*T _{CSI} expired after reception of Time_Event.
Status bit 0 r-0	Set_Time: The VPC3+D has received a valid 'Clock_Value telegram' and made the data available in the Clock_Sync-Buffer.
Command bit 7-3 r-00000	Reserved
Command bit 2 rw-0	Clock_Value_Check_Ena:
	0 = don't evaluate Clock_Value_previous_TE 1 = check Clock_Value_previous_TE with local variable Time_Last_Rcvd
Command bit 1 rw-0	Ignore_Cyclic_State_Machine: 0 = Clock Synchronization stops after the receiption of a new Set_Prm or a LEAVE-MASTER 1 = Clock Synchronization continues until the user set Stop_Clock_Sync
Command bit 0 w-0	Stop_Clock_Sync: Stop the Clock Synchronization, in order to write a new T _{CSI} without a previous Set_Prm or LEAVE-MASTER. The Bit is cleared by the Time_Receiver State Machine.
Clock_Value_ Status1 bit 7 r-0	C: Sign of CV 0 = add correction value to Time 1 = substract correction value to Time
Clock_Value_ Status1 bit 6-2 r-00000	CV: Correction Value 0 = 0 min 131 = 30930 min
Clock_Value_ Status1 bit 1-0 r-00	Reserved

	Clock_Sync-Buffer
Clock_Value_ Status2 bit 7 r-0	ANH: Announcment Hour 0 = no change planned within the next hour 1 = a change of SWT will occur within the next hour
Clock_Value_ Status2 bit 6 r-0	SWT: Summertime 0 = Winter Time 1 = Summer Time
Clock_Value_ Status2 bit 5 r-0	Reserved
Clock_Value_ Status2 bit 4-3 r-00	CR: Accuracy 0 = 1 ms 1 = 10 ms 2 = 100 ms 3 = 1 s
Clock_Value_ Status2 bit 2-1 r-00	Reserved
Clock_Value_ Status2 bit 0 r-0	SYF: Synchronisation Active: 0 = Clock_Value_Time_Event is synchronized 1 = Clock_Value_Time_Event is not synchronized
r-0	Clock_Value_Time_Event: Same format as defined in IEC 61158-6 is used. Value is stored with the most significant byte at the lowest address. No address swapping is done for Intel format.
r-0	Receive_Delay_Time: Value is stored with the most significant byte in address 12. No address swapping is done for Intel format.
r-0	Clock_Value_previous_TE: Same format as defined in IEC 61158-6 is used. Value is stored with the most significant byte at the lowest address. No address swapping is done for Intel format.
rw-0	Clock_Sync_Interval: Value is stored with the most significant byte in address 24. No address swapping is done for Intel format.

Figure 7-23: Format of the Clock_Sync-Buffer

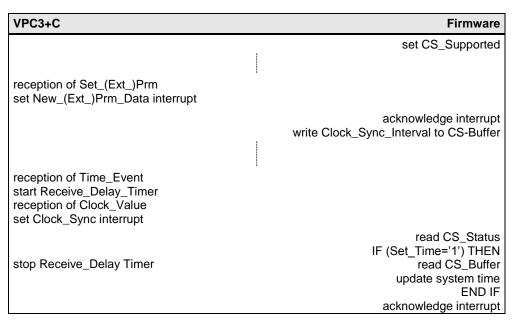


Figure 7-24: communication scheme

Notes:

Universal Processor Bus Interface 8.1

8.1.1 Overview

The VPC3+C has a parallel 8-bit interface with an 11-bit address bus. The VPC3+C supports all 8-bit processors and microcontrollers based on the 80C51/52 (80C32) from Intel, the Motorola HC11 family, as well as 8-/16bit processors or microcontrollers from the Siemens 80C166 family, X86 from Intel and the HC16 and HC916 family from Motorola. Because the data formats from Intel and Motorola are not compatible, VPC3+C automatically carries out 'byte swapping' for accesses to the following 16bit registers (Interrupt Register, Status Register and Mode Register 0) and the 16-bit RAM cell (R User WD Value). This makes it possible for a Motorola processor to read the 16-bit value correctly. Reading or writing takes place, as usual, through two accesses (8-bit data bus).

The Bus Interface Unit (BIU) and the Dual Port RAM Controller (DPC) that controls accesses to the internal RAM belong to the processor interface of the VPC3+C.

The VPC3+C is supplied with a clock pulse rate of 48MHz. In addition, a clock divider is integrated. The clock pulse is divided by 2 (Pin: DIVIDER = '1') or 4 (Pin: DIVIDER = '0') and applied to the pin CLKOUT 2/4. This allows the connection of a slower controller without additional expenditures in a low-cost application.

8.1.2 **Bus Interface Unit**

The Bus Interface Unit (BIU) is the interface to the connected processor/microcontroller. This is a synchronous or asynchronous 8-bit interface with an 11-bit (12-bit in 4K Byte mode) address bus. The interface is configurable via 2 pins (XINT/MOT, MODE). The connected processor family (bus control signals such as XWR, XRD, or R_W and the data format) is specified with the XINT/MOT pin. Synchronous or asynchronous bus timing is specified with the MODE pin.

XINT/MOT	MODE	Processor Interface Mode
0	1	Synchronous Intel mode
0	0	Asynchronous Intel mode
1	0	Asynchronous Motorola mode
1	1	Synchronous Motorola mode

Figure 8-1: Configuration of the Processor Interface

Examples of various Intel system configurations are given in subsequent sections. The internal address latch and the integrated decoder must be used in the synchronous Intel mode. One figure shows the minimum configuration of a system with the VPC3+C, where the chip is connected to an EPROM version of the controller. Only a clock generator is necessary as an additional device in this configuration. If a controller is to be used without an integrated program memory, the addresses must be latched for the external memory.

Notes:

If the VPC3+C is connected to an 80286 or similar processor, it must be taken into consideration that the processor carries out word accesses. That is, either a 'swapper' is necessary that switches the characters out of the VPC3+C at the correct byte position of the 16-bit data bus during reading or the least significant address bit is not connected and the 80286 must read word accesses and evaluate only the lower byte.

Name	Input/ Output	Туре	Comments	
DB(70)	I/O	Tristate	High-resistance during RESET	
AB(100)	I		AB(10) has a pull down resistor.	
MODE	I		Configuration: syn/async interface	
XWR/E_CLOCK AB11	I		Intel: Write Sync. Motorola: E-Clk AB11 (Asynchronous Motorola Mode)	
XRD/R_W	I		Intel: Read Motorola: Read/Write	
XCS AB11	I		Chip Select AB11 (Synchronous Intel Mode)	
ALE/AS	I		Intel/Motorola: Address Latch Enable	
AB11			AB11 (Async. Intel / Sync. Motorola Mode)	
DIVIDER	-		Scaling factor 2/4 for CLKOUT 2/4	
X/INT	0	Push/Pull	Polarity programmable	
XRDY/XDTACK	0	Push/Pull *	Intel/Motorola: Ready-Signal	
CLK	I		48 MHz	
XINT/MOT	I		Setting: Intel/Motorola	
CLKOUT2/4	0	Push/Pull	24/12 MHz	
RESET	I	Schmitt-Trigger	Minimum of 4 clock cycles	

Figure 8-2: Microprocessor Bus Signals

^{*} Due to compatibility reasons to existing competitive chips the XRDY/XDTACK output of the VPC3+C has push/pull characteristic (no tristate!).

Synchronous Intel Mode

In this mode Intel CPUs like 80C51/52/32 and compatible processor series from several manufacturers can be used.

- Synchronous bus timing without evaluation of the XREADY signal
- 8-bit multiplexed bus: ADB7..0
- The lower address bits AB7..0 are stored with the ALE signal in an internal address latch.
- The internal CS decoder is activated. VPC3+C generates its own CS signal from the address lines AB10..3. The VPC3+C selects the relevant address window from the AB2..0 signals.
- A11 from the microcontroller must be connected to XCS (pin 1) in 4K Byte mode as this is the additional address bus signal in this mode. In 2K Byte mode this pin is not used and should be pulled to VDD.

Asynchronous Intel Mode

In this mode various 16-/8-bit microcontroller series like Intel's x86, Siemens 80C16x or compatible series from other manufacturers can be used.

- Asynchronous bus timing with evaluation of the XREADY signal
- 8-bit non-multiplexed bus: DB7..0, AB10..0 (AB11..0 in 4K Byte mode)
- The internal VPC3+C address decoder is disabled, the XCS input is used instead.
- External address decoding is always necessary.
- External chip select logic is necessary if not present in the microcontroller
- A11 from the microcontroller must be connected to ALE/AS (pin 24) in 4K Byte mode as this is the additional address bus signal in this mode. In 2K Byte mode this pin is not used and should be pulled to GND.

Asynchronous Motorola Mode

Motorola microcontrollers like the HC16 and HC916 can be used in this mode. When using HC11 types with a multiplexed bus the address signals AB7..0 must be generated from the DB7..0 signals externally.

- Asynchronous bus timing with evaluation of the XREADY signal
- 8-bit non-multiplexed bus: DB7..0, (AB11..0 in 4K Byte mode)
- The internal VPC3+C address decoder is disabled, the XCS input is used instead.
- Chip select logic is available and programmable in all microcontrollers mentioned above.
- AB11 must be connected to XWR/E_CLOCK (pin 2) in 4K Byte mode as this is the additional address bus signal in this mode. In 2K Byte mode this pin is not used and should be pulled to GND.

Synchronous Motorola Mode

Motorola microcontrollers like the HC11 types K, N, M, F1 or the HC16- and HC916 types with programmable E_Clock timing can be used in this mode. When using HC11 types with a multiplexed bus the address signals AB7..0 must be generated from the DB7..0 signals externally.

- Synchronous bus timing without evaluation of the XREADY signal
- 8-bit non-multiplexed bus: DB7..0, AB10..0 (AB11..0 in 4K Byte mode)
- The internal VPC3+C address decoder is disabled, the XCS input is used instead.
- For microcontrollers with chip select logic (K, F1, HC16 and HC916), the chip select signals are programmable regarding address range, priority, polarity and window width in the write cycle or read cycle.
- For microcontrollers without chip select logic (N and M) and others, an external chip select logic is required. This means additional hardware and a fixed assignment.
- If the CPU is clocked by the VPC3+C, the output clock pulse (CLKOUT 2/4) must be 4 times larger than the E_Clock. That is, a clock pulse signal must be present at the CLK input that is at least 10 times larger than the desired system clock pulse (E_Clock). The Divider-Pin must be connected to '0' (divider 4). This results in an E_Clock of 3 MHz.
- AB11 must be connected to ALE/AS (pin 24) in 4K Byte mode as this is the additional address bus signal in this mode. In 2K Byte mode this pin is not used and should be pulled to GND.

GND

VDD

Clock-Generator DIVIDER CLK Clockdivider $\overline{\mathsf{WR}}$ XW R RD XRD RTS INT 0 X/INT TxD DB 7..0 Data Port 0 A/D 7...0 RxD80C 32/ DB 7..0 C501 Address-Latch ALE XCTS AB 7..0 VPC3+ 1K (0000 0XXX) AB 1 5...8 Decoder Port 2 GND AB8 AB9 AB10 VPC3+ Reset 1K 1K 1K

8.1.3 Application Examples (Principles)

Figure 8-3: Low Cost System with 80C32

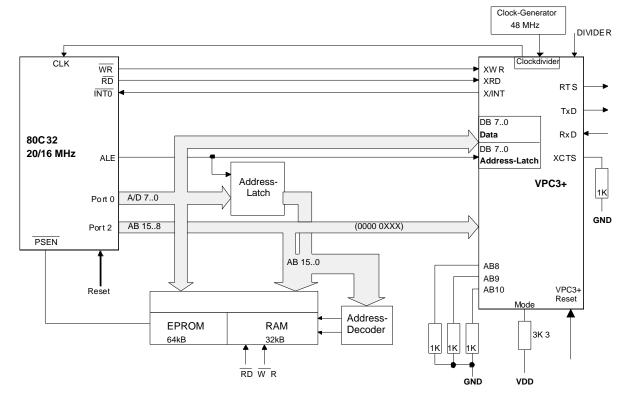


Figure 8-4: 80C32 System with External Memory

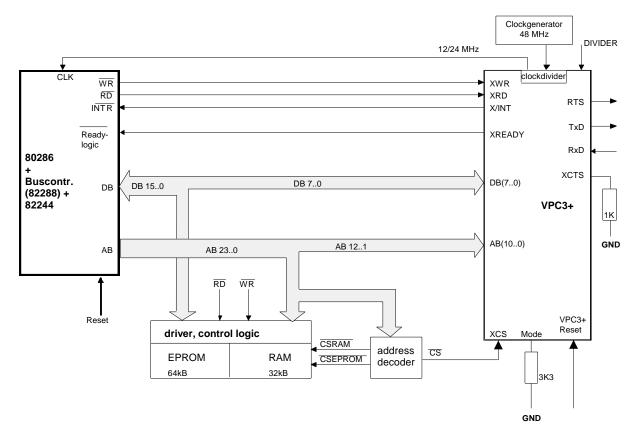


Figure 8-5: 80286 System (X86 Mode)

ADB5

ADB6

ADB7

μC DB(7..0)

8.1.4 Application with 80C32 (2K Byte RAM Mode)

48 MHz

1K

3K3

3K3

3K3

3K3

connect to VDD or GND

AB8

AB9

AB10

AB11

AB12

AB13

AB14

AB15

1K

1K

1K

GND H

VDD

VDD I

XWR

XRD

VDD ←

VDD ←

μC

μC

μC

AB(15..8)

μC

VPC3+

CLK

36

23

24

2

4

34

35

3

44

43 AB1

41

40

37

42

32

31

29

25

10

XINT/MOT

RESET

MODE

ALE

XWR

XRD

XTEST0

XTEST1

DIVIDER

AB0

AB2

AB4

AB5

AB6

AB7

AB8

AB9

AB10

Figure 8-6: 80C32 Application in 2K Byte mode

The internal chipselect is activated when the address inputs AB[10..3] of the VPC3+C are set to '0'.

20

21

22

DB5

DB6

DB7

In the example above the start address of the VPC3+C is set to 1000H.

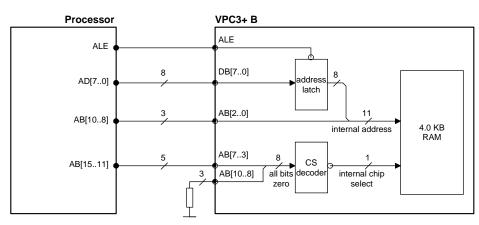


Figure 8-7: Internal Chipselect Generation in Synchronous Intel Mode, 2K Byte RAM

VPC3+ CLK 48 MHz GND⊢ XINT/MOT 1K 36 13 RESET LED for Data_Exchange **XDATAEX** μC **XREADY** 23 VDD MODE 3K3 24 μC ALE X/INT μC 2 XWR XWR μC XRD 4 XRD 34 XTEST0 GND 3K3 **XCTS** 1K VDD ← 35 XTEST1 VDD ← 3K3 3 30 connect to VDD or GND DIVIDER RXD RS485 44 27 AB0 RTS RS485> 43 AB9 26 AB1 TXD RS485> 41 AB10 AB2 AB11 1 ADB0 11 XCS/AB11 DRO AB12 40 12 ADB1 AB3 DB1 **AB13** 37 15 ADB2 AB4 DB2 AB14 42 16 ADB3 AB5 DB3 AB15 32 19 ADB4 AB6 DB4 31 20 ADB5 AB7 1K DB5 AB(15..8) 29 21 ADB6 1K AB8 DB6 μC 25 22 ADB7 AB9 1K DB7 10 AB10 GND 1K μC DB(7..0)

8.1.5 Application with 80C32 (4K Byte RAM Mode)

Figure 8-8: 80C32 Application in 4K Byte mode

The internal chipselect is activated when the address inputs AB[10..3] of the VPC3+C are set to '0'.

In the example above the start address of the VPC3+C is set to 2000H.

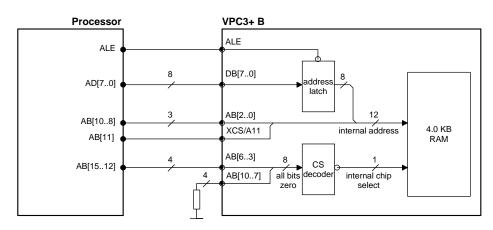


Figure 8-9: Internal Chipselect Generation in Synchronous Intel Mode, 4K Byte RAM

VPC3+ CLK 48 MHz GND H XINT/MOT CLK2 1K 36 13 μC RESET **XDATAEX** LED for Data_Exchange 1 14 **XREADY** XCS μC μC 23 GND H MODE 1K 24 GND ⊢ 1K ALE X/INT μC <u>XW</u>RL 2 XWR μC 4 XRD 34 XTEST0 XCTS GND 3K3 1K VDD ← 35 XTEST1 VDD ← 3K3 30 connect to DIVIDER RXD RS485 VDD or GND 27 RTS RS485 > 44 AB0 26 AB0 TXD RS485 AB1 43 AB1 AB2 41 11 DB0 AB2 DB0 AB3 40 12 DB1 AB3 DB1 37 AB4 15 DB2 AB4 DB2 AB5 42 16 DB3 AB5 DB3 AB6 32 19 DB4 AB6 DB4 AB7 31 20 DB5 AB7 DB5 AB8 29 21 DB6 AB8 DB6 AB9 25 22 DB7 AB9 DB7 AB10 10 AB10 μC μC DB(7..0)

8.1.6 **Application with 80C165**

Figure 8-10: 80C165 Application

Dual Port RAM Controller 8.2

AB(10..0)

The internal 4K Byte RAM of the VPC3+C is a single-port RAM. An integrated Dual-Port RAM controller, however, permits an almost simultaneous access of both ports (bus interface and microsequencer interface). When there is a simultaneous access of both ports, the bus interface has priority. This guarantees the shortest possible access time. If the VPC3+C is connected to a microcontroller with an asynchronous interface, the controller can evaluate the Ready signal.

8.3 UART

The transmitter converts the parallel data structure into a serial data flow. Signal Request-to-Send (RTS) is generated before the first character. The XCTS input is available for connecting a modem. After RTS active, the transmitter must hold back the first telegram character until the modem activates XCTS. XCTS is checked again after each character.

The receiver converts the serial data flow into the parallel data structure and scans the serial data flow with the four-fold transmission speed. Stop bit testing can be switched off for test purposes ('Dis_Stop_Control = 1' in Mode Register 0 or Set_Prm telegram for DP). One requirement of the PROFIBUS protocol is that no rest states are permitted between the telegram characters. The VPC3+C transmitter ensures that this specification is maintained.

The synchronization of the receiver starts with the falling edge of the start bit. The start bit is checked again in the middle of the bit-time for low level. The data bits, the parity and the stop bit are also scanned in the middle of the bit-time. To compensate for the synchronization error, a repeater generates a $\pm 25\%$ distortion of the stop bit at a four-fold scan rate. In this case the VPC3+ should be parameterized with 'Dis_Start_Control = 1' (in Mode Register 0 or Set_Prm telegram for DP) in order to increase the permissible distortion of the stop bit.

8.4 ASIC Test

All output pins and I/O pins can be switched to the high-resistance state via the XTEST0 test pin. An additional XTEST1 input is provided to test the chip on automatic test devices (not in the target hardware environment!).

Pin	Name	Value	Function
34	XTEST0	VSS (GND)	All outputs high-resistance
VDD VDD		VDD	Normal VPC3+ function
35	XTEST1	VSS (GND)	Various test modes
35	VIESII	VDD	Normal VPC3+ function

Figure 8-11: Test Ports

Pin Assignment 9.1

The data transmission is performed in RS485 operating mode (i.e., physical RS485). The VPC3+C is connected via the following signals to the galvanically isolated interface drivers.

Signal Name	Input/Output	Function
RTS	Output	Request to send
TXD	Output	Sending data
RXD	Input	Receiving data

Figure 9-1: PROFIBUS Signals

The PROFIBUS interface is a 9-way, sub D, plug connector with the following pin assignment.

Pin 1 - Free

Pin 2 - Free

Pin 3 - B line (Receive data / transmission data plus)

Pin 4 - Request to send (RTS)

Pin 5 - Ground 5V (M5)

Pin 6 - Potential 5V (floating P5)

Pin 7 - Free

Pin 8 - A line (Receive data / transmission data negative)

Pin 9 - Free

The cable shield must be connected to the plug connector housing. The free pins are described as optional in IEC 61158-2.

CAUTION:

The pin names A and B on the plug connector refer to the signal names in the RS485 standard and not the pin names of driver ICs.

Keep the wires from driver to connector as short as possible.

TXD is tristate output and requires external pull-up resistor for correct operation with common line drivers.

9.2 Example for the RS485 Interface

To minimize the capacity of the bus lines the user should avoid additional capacities. The typical capacity of a bus station should be 15...25 pF.

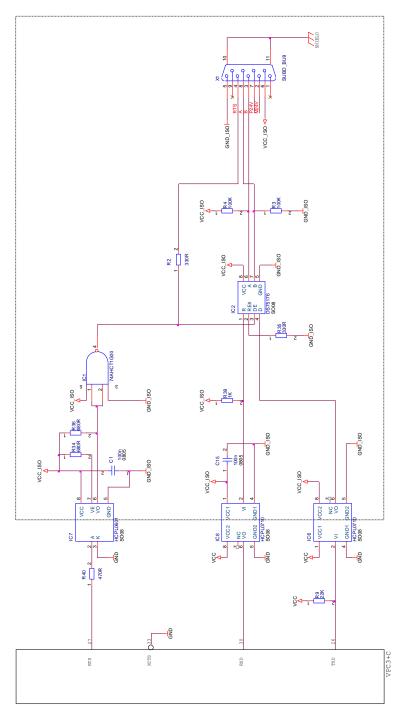


Figure 9-2: Example for the RS485 Interface

10.1 Absolute Maximum Ratings

Parameter Symbol		Limits	Unit
DC supply voltage	V _{DD}	-0.3 to 6.0	V
Input voltage	Vı	-0.3 to V _{DD} +0.3	V
Output voltage	Vo	-0.3 to V _{DD} +0.3	V
DC output current	Io	See Figure 10-4	mA
Storage temperature	T _{store}	-40 to +125	°C

Figure 10-1: Absolute Maximum Ratings

10.2 Recommended Operating Conditions

Parameter	Symbol	MIN	MAX	Unit
DC supply voltage	V_{DD}	3.00	5.50	V
Static supply current	I _{DD}		100 ¹⁾	μA
Circuit ground	V _{SS}	0	0	V
Input voltage	Vı	0	V_{DD}	V
Input voltage (HIGH level)	V _{IH}	0.7 V _{DD}	V_{DD}	V
Input voltage (LOW level)	V _{IL}	0	0.3 V _{DD}	V
Output voltage	Vo	0	V_{DD}	V
Ambient temperature	T _A	-40	+85	°C

Static I_{DD} current is exclusively of input/output drive requirements and is measured with the clock stopped and all inputs tied to V_{DD} or V_{SS}.

Figure 10-2: Recommended Operating Conditions

10.3 General DC Characteristics

Parameter	Symbol	MIN	TYP	MAX	Unit
Input LOW current	I _{IL}	-1		+1	μA
Input HIGH current	I _{IH}	-1		+1	μA
Tri-state leakage current	loz	-10		+10	μA
Current consumption (3.3V)	l _Α		36		mA
Current consumption (5V)	I _A		72		mA
Input capacitance	C _{IN}		5		pF
Output capacitance	C_OUT		5		pF
Bi-directional buffer capacitance	C_BID		5		pF
Thermal Resistance	Θ_{JA}		52.6		K/W

Figure 10-3: General DC Characteristics

10.4 Ratings for the Output Drivers

Signal	Direction	Driver Type	Driver Strength	Max. Cap. Load
DB 0-7	I/O	Tristate	8mA	100pF
RTS	0	Push/Pull	8mA	50pF
TXD	0	Tristate	8mA	50pF
X/INT	0	Push/Pull	4mA	50pF
XREADY/XDTACK	0	Push/Pull	4mA	50pF
XDATAEXCH	0	Push/Pull	8mA	50pF
CLKOUT2/4	0	Push/Pull	8mA	100pF

Figure 10-4: Ratings for the Output Drivers

Note:

TXD is tristate output and requires external pull-up resistor for correct operation with common line drivers.

10.5 DC Electrical Characteristics Specification for 5V Operation

Parameter	Symbol	MIN	TYP	MAX	Unit
DC supply voltage	V _{CC}	4.50	5.00	5.50	V
CMOS input voltage LOW level	V _{ILC}	0		0.3 V _{CC}	V
CMOS input voltage HIGH level	V _{IHC}	0.7 V _{CC}		V _{CC}	V
Output voltage LOW level	V _{OL}			0.4	V
Output voltage HIGH level	V _{OH}	3.5			V
CMOS Schmitt Trigger negative going threshold voltage	V _T .	1.5	1.8		V
CMOS Schmitt Trigger positive going threshold voltage	V _{T+}		3.2	3.5	V
TTL Schmitt Trigger negative going threshold voltage	V _{T-}	0.9	1.1		V
TTL Schmitt Trigger positive going threshold voltage	V _{T+}		1.9	2.1	V
Input LOW current	I _{IL}	-1		+1	μΑ
Input HIGH current	I _{IH}	-1		+1	μΑ
Tri-state leakage current	l _{OZ}	-10	±1	+10	μΑ
Output current LOW level, 4mA cell	I _{OL}	4.0			mA
Output current HIGH level, 4mA cell	I _{OH}	-4.0			mA
Output current LOW level, 8mA cell	I _{OL}	8.0			mA
Output current HIGH level, 8mA cell	Іон	-8.0			mA

Figure 10-5: DC Specification of I/O Drivers for 5V Operation

10.6 DC Electrical Characteristics Specification for 3.3V Operation

Parameter	Symbol	MIN	TYP	MAX	Unit
DC supply voltage	V _{CC}	3.00	3.30	3.60	V
CMOS input voltage LOW level	V _{ILC}	0		0.3 V _{CC}	V
CMOS input voltage HIGH level	V _{IHC}	0.7 V _{CC}		V _{CC}	V
Output voltage LOW level	V_{OL}			0.4	V
Output voltage HIGH level	V _{OH}	2.4			V
CMOS Schmitt Trigger negative going threshold voltage	V _{T-}	0.8			V
CMOS Schmitt Trigger positive going threshold voltage	V _{T+}			2.7	V
TTL Schmitt Trigger negative going threshold voltage	V _{T-}	0.6			V
TTL Schmitt Trigger positive going threshold voltage	V _{T+}			1.7	V
Input LOW current	I _{IL}	-1		+1	μA
Input HIGH current	I _{IH}	-1		+1	μA
Tri-state leakage current	l _{OZ}	-10	±1	+10	μA
Output current LOW level, 4mA cell	I _{OL}	+2.8			mA
Output current HIGH level, 4mA cell	Іон	-2.8			mA
Output current LOW level, 8mA cell	I _{OL}	+5.6			mA
Output current HIGH level, 8mA cell	I _{OH}	-5.6			mA

Figure 10-6: DC Specification of I/O Drivers for 3.3V Operation

Note:

For 3.3V operation the guaranteed minimum output current is 70% of that for 5V operation mode.

10.7 Timing Characteristics

All signals beginning with 'X' are 'low active'. All timing values are based on the capacitive loads specified in the table above.

10.7.1 System Bus Interface

Clock

Clock frequency is 48 MHz. Distortion of the clock signal is permissible up to a ratio of 30:70 at the threshold levels 0.9 V and 2.1 V.

Parameter	Symbol	MIN	MAX	Unit
Clock period	Т	20.83	20.83	
Clock high time	T _{CH}	6.25	14.6	ns
Clock low time	T _{CL}	6.25	14.6	ns
Clock rise time	T _{CR}		4	ns
Clock fall time	T _{CF}		4	ns

Figure 10-7: Clock Timing

Interrupt:

After acknowledging an interrupt with EOI, the interrupt output of the VPC3+C is deactivated for at least 1 us or 1 ms depending on the bit EOI_Time_Base in Mode Register 0.

Parameter	MIN	MAX	Unit
Interrupt inactive time EOI_Timebase = '0'	1	1	μs
Interrupt inactive time EOI_Timebase = '1'	1	1	ms

Figure 10-8: End-of-Interrupt Timing

Reset:

VPC3+C requires a minimum reset phase of 100 ns at power-on.

10.7.2 Timing in the Synchronous Intel Mode

In the synchronous Intel mode, the VPC3+C latches the least significant addresses with the falling edge of ALE. At the same time, the VPC3+C expects the most significant address bits on the address bus. An internal chipselect signal is generated from the most significant address bits. The request for an access to the VPC3+C is generated from the falling edge of the read signal (XRD) and from the rising edge of the write signal (XWR).

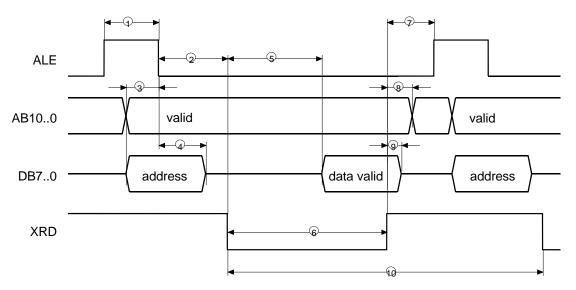


Figure 10-9: Synchronous Intel Mode, READ (XWR = 1)

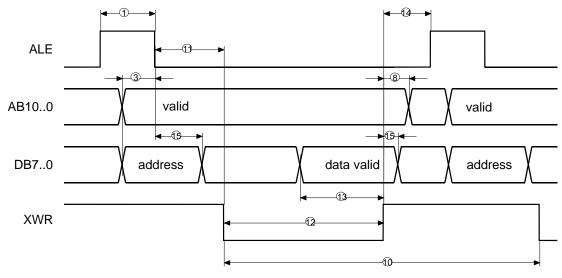


Figure 10-10: Synchronous Intel Mode, WRITE (XRD = 1)

		$V_{DD} = 3.3 \text{ V}$		V _{DD} = 5 V		
No.	Parameter	MIN	MAX	MIN	MAX	Unit
1	ALE pulsewidth	10		10		ns
2	ALE ↓ to XRD ↓	20		20		ns
3	Address to ALE ↓ setuptime	10		10		ns
4	Address holdtime after ALE ↓	10		10		ns
5	XRD ↓ to data valid		103 97		97	ns
6	XRD pulsewidth	115 115			ns	
7	XRD ↑ to ALE ↑	10		10		ns
8	address (AB70) holdtime after XRD/XWR ↑	5		5		ns
9	data holdtime after XRD ↑	4	16	4	13	ns
10	XRD / XWR cycletime	155		155		ns
11	ALE ↓ to XWR ↓	20		20		ns
12	XWR pulsewidth	83		83		ns
13	data setuptime to XWR ↑	10		10		ns
14	XWR ↑ to ALE ↑	10		10		ns
15	data holdtime after XWR ↑	10		10		ns

Figure 10-11: Timing, Synchronous Intel Mode

10.7.3 Timing in the Asynchronous Intel Mode

In the asynchronous Intel mode, the VPC3+C acts like a memory with ready logic. The access time depends on the type of access. The request for an access to the VPC3+C is generated from the falling edge of the read signal (XRD) or the rising edge of the write signal (XWR).

The VPC3+C generates the Ready signal synchronously to the system clock. The Ready signal gets inactive when the read or the write signal is deactivated. The data bus is switched to Tristate with XRD = '1'.

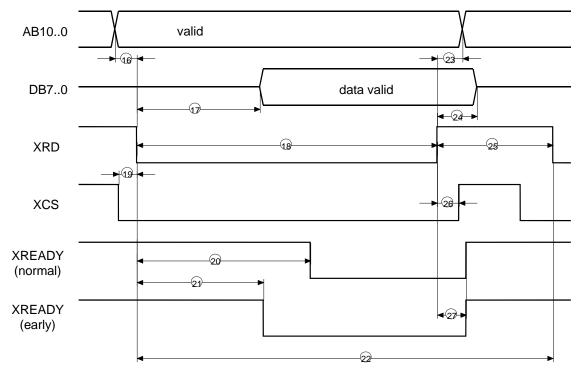


Figure 10-12: Asynchronous Intel Mode, READ (XWR = 1)

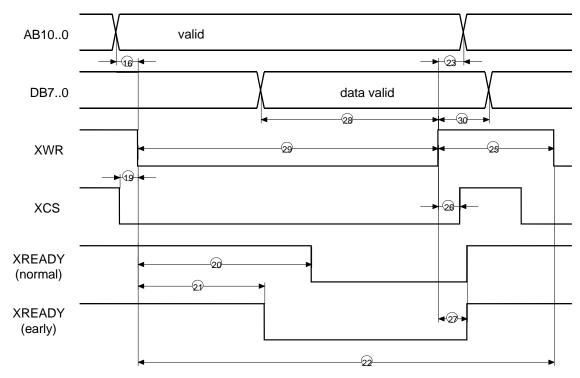


Figure 10-13: Asynchronous Intel Mode, WRITE (XRD = 1)

		VDD = 3.3 V		VDD = 5 V		
No.	Parameter	MIN	MAX	MIN	MAX	Unit
16	address-setuptime to XRD / XWR ↓	0		0		ns
17	XRD ↓ to data valid		103		97	ns
18	XRD pulsewidth	115		ns		
19	XCS $↓$ setuptime to XRD / XWR $↓$	0 0				ns
20	XRD ↓ to XREADY ↓ (Normal-Ready)	132			126	ns
21	XRD ↓ to XREADY ↓ (Early-Ready)		111		105	ns
22	XRD / XWR cycletime	125		125		ns
23	address holdtime after XRD / XWR ↑	0		0		ns
24	data holdtime after XRD ↑	4	16	4	13	ns
25	read/write inactive time	10		10		ns
26	XCS holdtime after XRD / XWR ↑	0		0		ns
27	XREADY holdtime after XRD / XWR	6	21	5	16	ns
28	data setuptime to XWR ↑	10		10		ns
29	XWR pulsewidth	83		83		ns
30	data holdtime after XWR ↑	10 10			ns	

Figure 10-14: Timing, Asynchronous Intel Mode

10.7.4 Timing in the Synchronous Motorola Mode

If the CPU is clocked by the VPC3+C, the output clock pulse (CLKOUT 2/4) must be 4 times larger than the E_Clock. That is, a clock pulse signal must be present at the CLK input that is at least 10 times larger than the desired system clock pulse (E_Clock). The Divider-Pin must be connected to '0' (divider 4). This results in an E_Clock of 3 MHz.

The request for a read access to the VPC3+C is derived from the rising edge of the E_Clock (in addition: XCS = 0, R_W = 1). The request for a write access is derived from the falling edge of the E_Clock (in addition: $XCS = 0, R_W = 0$.

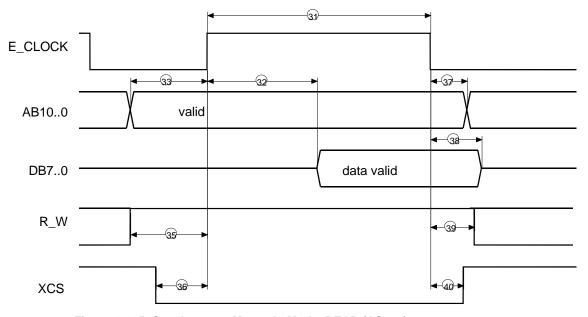


Figure 10-15: Synchronous Motorola-Mode, READ (AS = 1)

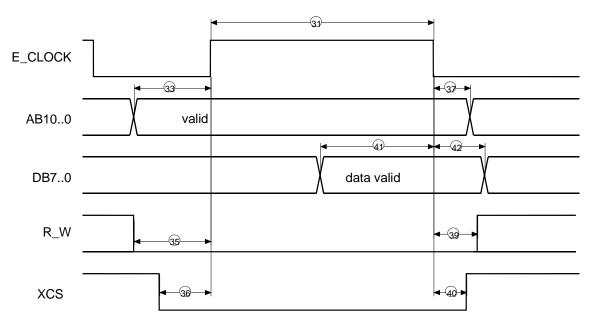


Figure 10-16: Synchronous Motorola-Mode, WRITE (AS = 1)

		VDD = 3.3 V		VDD = 5 V		
No.	Parameter	MIN	MAX	MIN	MAX	Unit
31	E_Clock pulse width	136.7		136.7		ns
33	Address setuptime (A100) to E_Clock ↑	10		10		ns
37	Address holdtime after E_Clock ↓	holdtime after E_Clock ↓ 5 5				ns
32	E_Clock ↑ to Data valid		103		97	ns
38	Data holdtime after E_Clock ↓	4	16	4	12	ns
35	R_W setuptime to E_Clock ↑	10		10		ns
39	R_W holdtime after E_Clock ↓	5		5		ns
36	XCS setuptime to E_Clock ↑	0		0		ns
40	XCS holdtime after E_Clock ↓	0		0		ns
41	Data setuptime to E_Clock ↓	10		10		ns
42	Data holdtime after E_Clock ↓	10		10		ns

Figure 10-17: Timing, Synchronous Motorola Mode

96

10.7.5 Timing in the Asynchronous Motorola Mode

In the asynchronous Motorola mode, the VPC3+C acts like a memory with Ready logic, whereby the access times depend on the type of access.

The request for an access of the VPC3+C is generated from the falling edge of the AS signal (in addition: XCS = '0', R_W = '1'). The request for a write access is generated from the rising edge of the AS signal (in addition: $XCS = '0', R_W = '0'$).

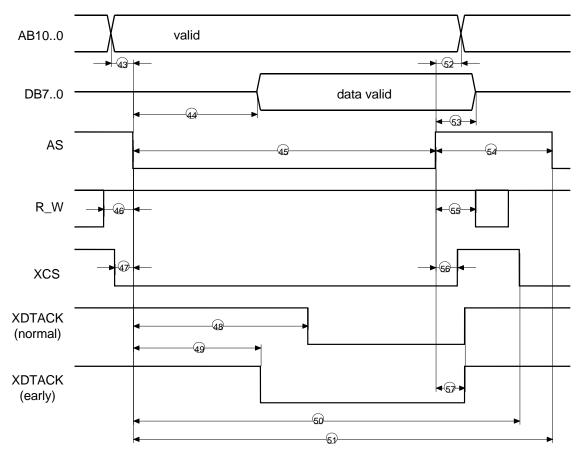
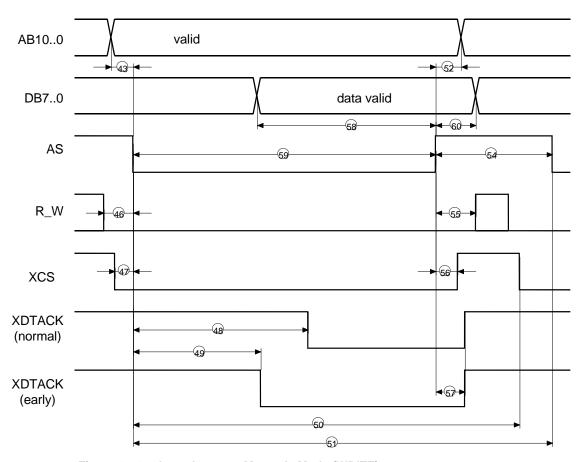
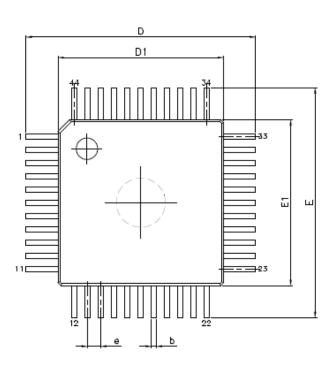
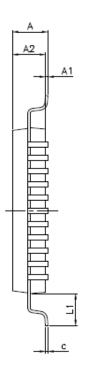
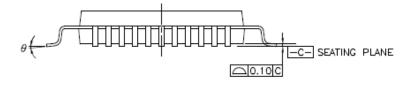


Figure 10-18: Asynchronous Motorola Mode, READ (E_CLOCK = 0)




Figure 10-19: Asynchronous Motorola Mode (WRITE)


		VDD = 3.3 V		VDD = 5 V		
No.	Parameter	MIN	MAX	MIN	MAX	Unit
43	address setuptime to AS ↓	0		0		ns
44	AS ↓ to data valid		103		97	ns
45	AS pulsewidth (read access)	115		115		ns
46	R_W ↓ setuptime to AS ↓	10		10		ns
47	XCS ↓ setuptime to AS ↓	5		5		ns
48	AS ↓ to XDTACK ↓ (Normal-Ready)	132			126	ns
49	AS ↓ to XDTACK ↓ (Early-Ready)		111		105	ns
50	last AS ↓ to XCS ↓	93		93		ns
51	AS cycletime	125		125		ns
52	address holdtime after AS ↑	10		10		ns
53	Data holdtime after AS ↑	4	16	4	13	ns
54	AS inactive time	10		10		ns
55	R_W holdtime after AS ↑	10		10		ns
56	XCS holdtime after AS ↑	0		0		ns
57	XDTACK holdtime after AS ↑	6	21	5	16	ns
58	Data setuptime to AS ↑	10		10		ns
59	AS pulsewidth (write access)	83 83			ns	
60	Data holdtime after AS ↑	10		10		ns


Figure 10-20: Timing, Asynchronous Motorola Mode

10.8 Package

The 44-pin PQFP package of the VPC3+C is compliant to the "Reduction of Hazardous Substances (RoHS) Directive" of the European Parliament. Please see the following figures for outlines and dimensions.

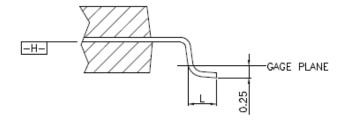


Figure 10-21: Package Drawing

Figure 10-22: Package Dimensions and Tolerances

Notes:

- 1. JEDEC outline: n/a
- 2. Datum plane <u>H</u>. is located at the bottom of the mold parting line coincident with where the lead exits the body.
- 3. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 do not include mold mismatch and are determined at datum plane —H—.
- 4. Dimension b does not include dambar protrusion.

10.9 Processing Instructions

Internal circuitry protects the inputs against damage caused by high static voltages or electric fields; however, normal precautions are necessary to avoid application of any voltage higher than maximum-rated voltages to this circuit.

The VPC3+C is a cracking-endangered component that must be handled properly.

Profichip products are tested and classified for moisture sensitivity according to the procedures outlined by JEDEC. The VPC3+C is classified as moisture sensitivity level (MSL) 3.

Note:

In order to minimize any potential risk caused by moisture trapped inside non-hermetic packages it is a general recommendation to perform a drying process before soldering.

10.10 Ordering Information

Version / Part Number	Order Code	Package	Temperature Range	Notes
VPC3+CLF3	PALF2080	PQFP44	Industrial (-40°C to +85°C)	Clock-Synchronization RoHS compliant

Revision History

Version	Date	Page	Remarks
V1.00	10.05.2004		First release
V1.01	18.07.2004		Re-formatting and correction of typing errors
V1.02	22.09.2004		Some minor corrections
V1.03	12.01.2006	54 80 85	Consecutive paging Additional figures for FDL-Interface Figure 9-2 updated Figure 10-10 revised
V1.04	19.03.2007	62 63 96 81	Figure 7-12 revised Figure 7-13 revised Ordering Information added Thermal Resistance added
V2.00	30.04.2008	25 68-73	add Mode Register 3 add Clock Synchronization
V2.01	02.06.2008	25	correct description of DX_Int_Mode_2 in Mode Register 3
V2.02	05.12.2008	87	Absolute Maximum Rating of V _I changed to 6.0 V
V2.03	07.05.2009	25	correct description of GC_Int_Mode_Ext in Mode Register 3
V3.00	10.01.2013	100-101 101 101	package data updated processing instructions revised ordering information updated
V3.01	18.02.2014	102	Part number added to ordering information
V3.02	26.05.2014	9, 85, 88 89	Notes regarding external pull-up on TXD added input voltage specification for 3.3V operation changed
V3.03	01.12.2014	102	processing instructions updated
V3.04	30.03.2015	85	Modification of pin description SUB-D connector

上海泗博自动化技术有限公司 中国区代理

销售热线: 400-613-9938 服务热线: 021-3126 5138 邮箱: sales@sibotech.net 网址: www.sibotech.net

