

ERTEC 200P-3

Enhanced Real-Time Ethernet Controller

Data Sheet

Edition 03/2023

Disclaimer

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions. Suggestions for improvement are welcome.

This data sheet contains hyperlinks to the websites as well as to electronic documents of third-party companies. Siemens cannot be held responsible for the contents of these websites and electronic documents, nor does Siemens adopt these web sites and electronic documents and their contents as its own. You therefore use these links at your own risk. Since Siemens is not responsible for linked contents and information on the websites and electronic documents of third parties, this information is not checked by Siemens.

Copyright © Siemens AG 2023. All rights reserved.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

All product and system names are registered trademarks of their respective owners and must be treated as such.

Technical data subject to change.

Preface

Target audience of this data sheet

This data sheet is intended for hardware and software developers who want to use the ERTEC 200P-3 for new products. Experience working with processors and designing embedded systems and knowledge of Ethernet are required for this.

The data sheet describes the ERTEC function groups in detail and provides information that you must take into account when configuring your own PROFINET IO device hardware.

The data sheet serves as a reference for hardware and software developers. The address areas and register contents are described in detail for the function groups.

Scope of the data sheet

This data sheet is valid only for ERTEC 200P-3. For information on ERTEC 200P-1/2, refer to the respective data sheet.

Guide

To help you quickly find the information you need, this data sheet contains the following aids:

A complete table of contents as well as a list of figures and tables in the data sheet are provided at the beginning of the data sheet, followed by a list of abbrevations used in the data sheet.

Conventions

ERTEC 200P, ERTEC 200P-3: We refer to "ERTEC 200P" or "ERTEC 200P-3" in this documentation as a synonym for ERTEC 200P Step3.

This documentation contains pictures of the devices described. The figures may differ slightly from the device supplied.

You should also pay particular attention to notes such as the one shown below:

Note

A note contains important information on the product, on handling of the product and on the section of the documentation to which you should pay particular attention.

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit https://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under <u>https://www.siemens.com/cert</u>.

Technical Support

Technical information and support on development packages are provided by Support Team:

Siemens Sanayi ve Ticaret A.Ş. Office Address: Yakacık Caddesi No 111 34870 Istanbul, Turkey Email: profinet.devkits.industry@siemens.com

PROFINET Certification

Comprehensive consulting prior to starting the development project is particularly important for an efficient and successful development process. The final step in field device development is certification. For PROFINET, Siemens also offers you independent, accredited test laboratories like "ComDeC" in Germany, "PIC" in the USA, "ITEI" in China, and "an testlabs" in the Czech Republic.

Germany and Europe

Siemens AG Communication, Development & Certification (ComDeC) Breslauer Strasse 5 90766 Fürth, Germany Tel.: +49 (911) 750-2080 E-mail: <u>comdec@siemens.com</u> Web: <u>www.siemens.com/comdec</u>

Europe

ANF Data Zelený pruh 1560/99 140 00, Praha 4, Czech Republic Tel.: +420 244 091 111 E-mail: <u>antestlabs@anfdata.cz</u> Web: <u>https://new.siemens.com/cz/cs/products/sluzby-a-servis/an-testlabs.html</u>

USA

PROFI Interface Center (PIC) One Internet Plazza PO Box 4991 Johnson City, TN 37602-4991, USA Tel.: +1 (423) - 262 - 2576 E-mail: <u>pic.industry@siemens.com</u> Web: <u>www.profiinterfacecenter.com</u>

China

Siemens Ltd., China Factory Automation Department 7, Wang Jing Zhong Huan Nan Lu, Chaoyang District, Beijing 100102, PR. China E-mail: <u>profinet.cn@siemens.com</u>

Overview

> Integrated processor ARM926EJ-S

- 250 MHz Core Frequency
 - 16 KByte Data-Cache
 - 16 KByte Instruction-Cache
 - 256 KByte TCM
- 8 KByte Boot ROM
- Little-endian

> System Bus Structure

- 32 Bit / 125 MHz AHB Bus
- Multi-Layer AHB Lite with 9
 Masters and 18 Slaves
- AHB Address Range Monitoring
- Round Robin or Fixed Priority

Local Bus Unit (XHIF)

- Allows External Master to access internal ERTEC 200P-3 registers
- 16 / 32-Bit Data Bus
- 2 x 4 Paging Registers

> Memory Controller (EMC)

- 8 / 16 / 32 Bit Data Bus
- 4 chip selects
- supports SDRAM, SRAM

> Onchip Peripherals

- DMA Controller
- 6 Timers
- 2 Watchdogs

> I/O Interfaces

- 1 Octal SPI Interface
- 2 x 2 SPI Interfaces
- 4 UARTs
- 1 I²C-Interface
- One 96-bit GPIO Port
- 1.8 / 3.3 V I/O Buffers

Fest / Debug Functionality

- Boundary Scan
- EJTAG for Debugging
- Integrated Ethernet-Phy
 - 2 Ports
 - Supports 100BASE-TX and -FX
 - Auto Cross Over
 - Auto MDIX
 - Jitter free Latency
- > Package
 - 358 Pin P-LFBGA
 - Size 17 x 17 mm
 - Ball Pitch 0.8mm

Table of Contents

P	reface.		3
0	verview	W	6
Т	able of	Contents	7
Li	ist of F	ïgures	
Li	ist of T	ables	11
Α	bbrevia	ations	
1	Fun	ctional Overview	
	1.1	Block diagram	
	1.2	Key Functional Units	
	121	1 Processor Core Subsystem (ARM926)	16
	1.2.2	2 Processor Bus Unit	
	1.2.3	3 PROFINET – IP	17
~	1.2.4	4 PerlF	
2	IO Ir	nterface	
	2.1	Overview	
	2.2	Detailed Signal Description	
	2.2.1	1 Strapping Pins	
	2.3		
	2.3.1	1 EMC Liming	40
	2.0	2.3.1.1.1 SRAM Timing for read access	
		2.3.1.1.2 SRAM Timing for write access	
	2.3	3.1.2 SDRAM Timing	
		2.3.1.2.2 SDRAM Timing for write access	
	2.3.2	2 XHIF Timing	47
	2.3	3.2.1 Separate RD/WR	
	233	3. 2.2 Common RD/WR	
	2.3.4	4 Peripheral Interface Timing	
	2.3	3.4.1 Local GPIO (Parallel) Timing	57
	2.3	3.4.2 Local SPI (Serial) Timing	
	2.3.0	5 SPITIMING 6 LIART Timing	
	2.3.7	7 I ² C Timing	
	2.3	3.7.1 I ² C – APB	65
	2.3	3.7.2 I ² C – PN-IP	
	2.3.0	9 JITAG Timing	
	2.3.1	10 OctalSPI Timing	
3	Layo	out and Design Hints	
	3.1	Analog PLL	
	3.2	EMC Measures	
	3.2.1	1 ESD Protection	79
	3.2.2	2 Immunity to ESD	79
	3.2.3	3 Spike Filter	
	3.3	Crystal Oscillator Layout	80
	3.3.1	1 Use case 1: External crystal, internal oscillator	
	3.3.4 3.3.2	 Use case 2. External oscillator cell / CMOS clock input Use case 3: External MEMS oscillator 	84 גע
	3.4	Test Signal Configuration	

	3.5	JTAG	Wiring	86
	3.5	5.1	JTAG ID	87
	3.6	PHY V	/iring	88
	3.6	5.1	PHY-TX Wiring	88
	3.6	5.2	PHY-TX Wiring – UTP port not used	92
	3.6	5.3	PHY-FX Wiring	92
	3.6	5.4 · -	PHY-FX Wiring – FX circuit not used	96
	3.0	0.0 3.6.5.1	PHY-SD WINING - AVago QFBR-5978AZ	96
	3	3.6.5.2	GPIO circuit	97
	3.7	Wiring	of unused pins	98
	3.8	Operat	ting Conditions	99
	3.8	5.1	Absolute Maximum Ratings	99
	3.8	.2	Conditions of Operation.	.100
	3.8	.3	Ambient Conditions	.103
	3.8	3.4	Power Up	.103
	3.8	5.5	Wiring of CTRL-STBY	.104
	3.8	5.6 7	Power-Up Sequence (PLL)	.104
	3.8	0.7 3 8 7 1	PLL Benavior	104
	3	3.8.7.2	External filtering	104
	3	3.8.7.3	Upon temporary clock failure	105
	3.9	Power	Dissipation	.106
	3.10	Interfa	ce Changes from ERTEC 200P-2 to ERTEC 200P-3	.107
4	De	sign Co	nsiderations	.108
	4.1	Desigr	Recommendations	.108
	4.1	.1	Design Recommendations for ERTEC 200P-3 EMC Bus	.108
	4	i.1.1.1	Recommended EMC Settings	108
	4	1.1.1.2	Used SDRAM	. 109
	4	1.1.1.3	Possible ERTEC 200P-3 EMC configurations	. 109
	4	1115	SDRAM Write Timing	112
	4	1.1.1.6	SDRAM Read Timing	112
	4.2	Clocki	ng	.113
	4.2	.1	Clock Generation and Distribution	.113
	4.2	.2	Oscillator	.113
	4.2	.3	External Clock Source	.113
	4.2	2.4 Decet	PLL Power Supply	.113
	4.3	Reset.		.113
	4.3	5.1	Power-On Reset Behaviour	.113
	4.3	9.Z	Strapping Pins	114
	4.3	1.3.3.1	Asynchronous PowerOn Reset (XRESET)	. 114
	4	1.3.3.2	Reset and Start-up Timing	115
	4	1.3.3.3	Asynchronous Hardware Reset	. 116
	4	1.3.3.4	Asynchronous JTAG Reset	116
	4	4.3.3.5 4.3.3.6	Asynchronous ARM926 Watchdog Reset.	. 116
	4	1.3.3.7	Asynchronous Software Reset for PN-IP	117
	4	1.3.3.8	Asynchronous Software Reset for the ARM926EJ-S Core	. 117
	4	1.3.3.9	Synchronous Software Reset (PN-IP, PER-IF, XHIF)	118
	4.4	GPIO	Pins	.118
	4.5	Pull-up	o/down Resistors	.118
	4.6	GPIO	Pin Mapping	.119
	4.7	Config	uration Pins	.122

4.8	Boot Pi	ns	124
4.8 5 Pa	3.1 ckage	Startup Times	125 126
5.1	Packag	e Drawing	126
5.2	Ball La	yout	128
5.3	Marking	g (Printed)	129
5.4	Order C	Codes (MLFBs)	129
5.5	Therma	al Characteristics	129
5.5	5.1	Max. junction temperature TJ	
5.6	Solder	Profile	131
5.7	Packing	g Information	133
5.7	' .1	Tape&Reel	133
5	5.7.1.1	Tape&Reel specification for STK final testing and packing	
5	5.7.1.1	Tape&Reel specification for ASE final testing and packing	
5.7	.2	Packing	136
5	5.7.2.1	Packing specifications for STK final testing and packing	
5	5.7.2.2	Packing specifications for ASE final testing and packing	
5.7	.3	Moisture Sensitivity Level	136
6 Qu	ality		138
6.1	Hard-E	rror FIT Rates	138
6.2	Soft-Er	ror FIT Rates	138
6.3	RoHS /	REACH	138

List of Figures

Figure 1-1: ERTEC 200P-3 Block Diagram	15
Figure 2-1: Definition of time reference	39
Figure 2-2: SRAM Timing for read access	40
Figure 2-3: SRAM Timing for write access	42
Figure 2-4: SDRAM Timing for read access	44
Figure 2-5: SDRAM Timing for write access	46
Figure 2-6: XHIF Read Access	47
Figure 2-7: XHIF Write Access	49
Figure 2-8: XHIF Common Read Access	51
Figure 2-9: XHIF Common Write Access	53
Figure 2-10: PNPLL Timing	55
Figure 2-11: SPI (Serial) Timing	58
Figure 2-12: SPI Timing	60
Figure 2-13: Debug interface	69
Figure 3-1: Spike Filter Implementation	80
Figure 3-2: Oscillator Circuitry	81
Figure 3-3: Equivalent Crystal Model	82
Figure 3-4: Oscillator Circuitry Layout Example	83
Figure 3-5: External Oscillator	84
Figure 3-6: PHY-TX Wiring	91
Figure 3-7: UTP circuit unused	92
Figure 3-8: PHY FX ciruit	95
Figure 3-9: PHY FX circuit unused pins	96
Figure 3-10: SD level translation circuit (FX_SD_P/N)	97
Figure 3-11: SD level translation circuit (GPIO)	97
Figure 3-12: Power-Up Sequence (PLL)	.104
Figure 4-1: EMC Bus configurations	.109
Figure 4-2: Use Case External Host	.111
Figure 4-3: SDRAM Write Timing	.112
Figure 4-4: SDRAM Read Timing	.112
Figure 4-5: Reset and Start-up Timing	.115
Figure 4-6: Single GPIO Cell	.118
Figure 5-1: Package Dimensions (Top, Side)	.126
Figure 5-2: Package Dimensions (Bottom)	.127
Figure 5-3: ERTEC 200P-3 Package Drawing	.127
Figure 5-4: Ball Layout	.128
Figure 5-5: Marking	.129
Figure 5-6: Solder Profile	.131
Figure 5-7: Reflow Profile	.133
Figure 5-8: Carrier Tape (STK)	.134
Figure 5-9: Cover Tape & Reel (STK)	.134
Figure 5-10: Carrier Tape (ASE)	.135
Figure 5-11: Cover Tape & Reel (STK)	.135
Figure 5-12: Packing specifications (STK)	.136
Figure 5-13: Packing specification (ASE)	.136

List of Tables

Table 2-1: IO – pin count overview	18
Table 2-2: Detailed Signal Description	20
Table 2-3: Strapping Pins	38
Table 2-4: EMC Timing (1.8 V)	40
Table 2-5: SRAM Timing (1.8 V)	42
Table 2-6: SDRAM Timing	43
Table 2-7: SDRAM Timing for read access (1.8 V)	45
Table 2-8: SDRAM Timing for write access (1.8V)	46
Table 2-9: Host Interface Timing for read (1.8 V).	47
Table 2-10: Host Interface Timing for read (3.3 V)	48
Table 2-11: Host Interface Timing for write (1.8 V)	.49
Table 2-12: Host Interface Timing for write (3.3 V)	50
Table 2-13: Host Interface Timing for common read (1.8 V)	51
Table 2-14: Host Interface Timing for common read (3.3 V)	52
Table 2-15: Host Interface Timing for common write (1.8 V)	53
Table 2-16: Host Interface Timing for common write (3.3.V)	54
Table 2-17: PNPLL Timing	56
Table 2-18: Timing for time synchronization	
Table 2-10: PNPLL triggered by internal sources	
Table 2-19. I for LE inggered by Internal Sources	
Table 2-20. Local GPIO (Parallel) Timing (1.0 V)	
Table 2-21. Local SPID (Falallel) Timing (3.3 V)	
Table 2-22. Local SPI1 (Serial) Timing (1.0 V)	
Table 2-25. Local SPI1 (Serial) Timing (3.5 V)	
Table 2-24. Local SPI2 (Serial) Timing (1.6 V)	
Table 2-25. Local SPI2 (Senal) Tilling (S.S.V)	
Table 2-26: SPIT Timing via GPIO Alternate Function A	60
Table 2-27: SPIT Timing via GPIO Alternate Function C	01
Table 2-28: SPI2 Timing Via GPIO Alternate Function A	61
Table 2-29: SPI2 Timing Via GPIO Alternate Function C	62
Table 2-30: UART1 Timing (1.8 V)	63
Table 2-31: UART1 Timing (3.3 V)	63
Table 2-32: UART2 Timing	64
Table 2-33: UART3 Timing	64
Table 2-34: UART4 Timing (1.8 V)	64
Table 2-35: UART4 Timing (3.3 V)	64
Table 2-36: I ² C - APB Timing	65
Table 2-37: I ² C - APB Timing Alternative 1	65
Table 2-38: I ² C - APB Timing Alternative 2 (1.8 V)	65
Table 2-39: I ² C - APB Timing Alternative 2 (3.3 V)	65
Table 2-40: I ² C - PN-IP Timing	66
Table 2-41: I ² C - PN-IP Timing Alternative 1	66
Table 2-42: I ² C - PN-IP Timing Alternative 2 (1.8 V)	66
Table 2-43: I ² C - PN-IP Timing Alternative 2 (3.3 V)	66
Table 2-44: I ² C - PN-IP Timing Alternative 3 (1.8 V)	67
Table 2-45: I ² C - PN-IP Timing Alternative 3 (3.3 V)	67
Table 2-46: GPIO Timing	67
Table 2-47: OctalSPI Timing (3.3 V at 15 pF load)	70
Table 2-48: OctalSPI Timing (1.8 V at 15 pF load)	72
Table 2-49: OctalSPI Timing (3.3 V at 10 pF load)	74
Table 2-50: OctalSPI Timing (1.8 V at 10 pF load)	76
Table 3-1: Test Signal Configuration	85
Table 3-2: Electrical Characteristics Twisted Pair	88
Table 3-3: Electrical Characteristics Fiber	93
Table 3-4: Recommendation for handling special function signals	98

Table 3-5: Absolute maximum ratings	99
Table 3-6: Operating conditions	
Table 3-7: Ambient conditions	
Table 3-8: Power Dissipation with 1.8 V / 3.3 V, switchable IO set to 1.8 V	
Table 3-9: Power Dissipation with 1.8 V / 3.3 V, switchable IO set to 3.3 V	106
Table 3-10: Interface Changes	107
Table 4-1: Recommended EMC settings	108
Table 4-2: Min/ max trace length	110
Table 4-3: Overview of ERTEC 200P-3 clocks	113
Table 4-4: ERTEC 200P-3 Reset Matrix	114
Table 4-5: GPIO Port 0 Input Mapping	119
Table 4-6: GPIO Port 1 Input Mapping	120
Table 4-7: GPIO Port 2 Input Mapping	121
Table 4-8: Configuration Pins	122
Table 4-9: Boot Modes	124
Table 4-10: Startup Times	125
Table 5-1: Order codes	129
Table 5-2: Thermal Characteristics	129
Table 5-3: Max. Juction Temperature	130
Table 5-4: Livetime	131
Table 5-5: Tabular form for soldering profile data	132
Table 6-1: Hard-Error FIT Rates	138
Table 6-2: Soft-Error FIT Rates	138

Abbreviations

Abbreviation	Description
AHB	AMBA Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
APB	AMBA A dvanced P eripheral B us
CAS	Column Address Signal
CR	Communication Relationship (e.g. input data / output data)
CRU	Clock Reset Unit
DMA	Direct Memroy Access
DP	Distributed Peripherals
ECC	Error Correction Code
EMC	External Memory Controller
ENC	Encoder Interface
ЕТВ	Embedded Trace Buffer
ЕТМ	Embedded Trace Macrocell
FIFO	First In First Out
FIT	Failure In Time
GDMA	Generic Direct Memory Access
GPIO	General Purpose Input/Output

Abbreviation	Description									
HW	Hardware / Half-Word									
HWAL	Hardware Abstraction Layer									
ICE	In Circuit Emulation									
ICU	Interrupt Control Unit									
IP	Intellectual Property									
IRQ	Interrupt Request									
IRT	Isochronous Real Time									
JTAG	Joint Test Action Group									
LVPECL	Low-Voltag Positive Emitter Coupled Logic									
МС	Motion Control									
MMD	Memory Map Decoder									
MMU	Memory Management Unit									
n.a.	not applicable									
РСВ	Printed Circuit Board									
PCI	Peripheral Communication Interface									
PECL	Positive Emitter Coupled Logic									
РНҮ	Physical Layer									
PLL	Phase Locked Loop									
PNPLL	PROFINET PLL									
PRBS	Pseudo Random Binary Sequence									
РТСР	Precision Transparent Clock Protocol									
RAS	Row Address Signal									
RD	Read									
SCRB	System Control Register Block									
SDRAM	Synchronous Dynamic RAM									
SMI	Serial Management Interface									
SMT	Serial Module Test									
SPI	Serial Peripheral Interface									
SRAM	Static Random Access Memory									
SW	Software									
ТСМ	Tightly Coupled Memory									
TLB	Translation Lookaside Buffers									
UART	Universal Asynchronous Receiver/Transmitter									
UTP	Unshielded Twisted Pair									

Abbreviation	Description
W	Word
WR	Write

1 Functional Overview

1.1 Block diagram

Figure 1-1: ERTEC 200P-3 Block Diagram

1.2 Key Functional Units

1.2.1 Processor Core Subsystem (ARM926)

- ARM926EJ-S Processor Core (revision r0p5)
- 8 KByte Boot ROM
- 256 KByte TCM
 - EDC with 1 Bit error correction and 2 Bit error detection with byte access
 - configurable as data (256-0 KByte) or instruction (0-256 KByte)-RAM
 - configuration-step: 64 KByte
 - ARM Interrupt Controller
 - max. 96 interrupts
 - max. 8 fast interrupts
 - 8 software interrupt inputs and 86 hardware interrupt inputs
- Embedded Trace Macrocell (ETM9) for debugging
 - 8 address comparators
 - 4 address range comparators
 - 2 data comparators with filter functions
 - 4 trigger inputs (1 input "EXTMEXTINO" available over alternate function)
 - 1 trigger output (available over alternate function)
 - 8 MMD regions to decode physical addresses
 - 3-stage sequenzer
 - 2 independent counters
 - FIFO size: 45 Byte
- JTAG block for debugging
- Memory Management Unit (MMU) with Translation Lookaside Buffers (TLBs)
- Separate Data and Instruction-Bus

1.2.2 Processor Bus Unit

- External Memory Controller (EMC)
 - SDRAM controller features:
 - 16 / 32 bit databus width
 - PC133 SDRAM-compatible (125 MHz synchron is used)
 - 1 Bank with max. 256 MByte SDRAM (32 Bit databus)
 - SDRAM support for following parts:
 - CAS-Latency: 2 or 3 clocks
 - Bank-address bits (1/2/4 internal banks), realized via the lowest two bits of the address bus MA(1:0)
 - 8 / 9 / 10 / 11 Bit column-address MA(13), MA(11:2)
 - max. 14 Bit row-address MA(15:2)
 - asynchronous controller features:
 - 8 / 16 / 32 Bit bus width (for each chip select programmable)
 - 4 chip selects
 - the timing for each chip select can be set individually
 - the response to ready signal can be set individually for each chip select
 - a maximum of 64 MByte address area for each chip select
- DMA Controller
 - 1 Channel
 - 32 Jobs
 - 20 can be started from hardware
 - 32 can be started from software
- Octal SPI via GPIO pins
- Two SPI
 - SPI1 via dedicated pins
 - SPI2 via GPIO pins

- UART interface via dedicated IO pins
 - Timer Unit (Module TIMER_TOP)
 - reloadable Down-Counters
 - each timer is equipped with a multiplexer for trigger signals
 - Interrupt Control Unit (Module ICU)
 - level or edge triggered operation
 - 96 interrupt request inputs
 - Interrupt priority is individually selectable for each request input
 - Watchdog Unit
 - Watchdog interrupt generation via counter 0
 - Watchdog reset generation via counter 1
 - After initiating the watchdog timer, it will not stop counting unless the system is restarted.

1.2.3 PROFINET – IP

- 2 Ethernet-Ports
- 100MBit/s Ethernet-Port with integrated dual PHY
- Dynamic Frame Packing
- Fast Forwarding
- Short Preamble
- Dynamic Fragmentation
- IRT-Forwarding
- PNPLL
- Support for synchronization protocols (e.g., PTCP)

1.2.4 PerlF

- Supports consistence for IO data
- 8 ARs
 - 1 Supervisor AR

2 IO Interface

2.1 Overview

Table 2-1: IO – pin count overview

Description	Voltage	BGA Balls
Functional signals		
Standard signals	3.3V	37
XHIF/GPIOs	3.3V/1.8V	96
EMC	1.8V	79
	Subtotal	212
Power-Supply		
VDD_CORE	1.1 V	8
AVDD_PLL	1.1 V	1
VDDD_PHY	1.1 V	0
VDDA_PHY	1.1 V	2
VDD33	3.3 V	3
VDD_OSPI	3.3/1.8 V	2
VDD_XHIF	3.3/1.8 V	3
VDD_EMC	1.8 V	3
VDDIOD_PHY	3.3 V	2
VDDIOA_PHY	3.3 V	4
AVDDHV_PLL	3.3 V	1
VSS	GND	105
VSSD_PHY	GND	0
VSSIOD_PHY	GND	0
VSSA_PHY	GND	2
VSSIOA_PHY	GND	2
	Subtotal	138
Oscillator		
XTAL1(in)	3.3V	1
XTAL2(in)	3.3V	1
REF_CLK, BYP_CLK	3.3V	2
	Subtotal	4
Test pins		
TMC1, TMC2 (inputs)	3.3V	2
TEST, TACT	3.3V	2
	Subtotal	4
	Total	358

2.2 Detailed Signal Description

The following notes belong to Table 2-2:

Active level low = Signal name X....;

*) Driver power of the EMC signals can be set on a group-specific basis (G1 – G9) in the SCRB_DRIVER_EMC register.

Values after reset for the different groups @1.8 V:

- G1, G3, and G7 6 mA

- G2, G4, G5. G6, G8 and G9 8 mA

**) Driver power of GPIO(31-0) and XHIF interface GPIO(95-32); can be set on a signal-specific basis with the SCRB_DRIVEx_yGPIO SCRB.

Value after reset @3.3 V: 8 mA, @1.8V: 4 mA

***) Pull circuit for GPIO(31-0) and XHIF interface GPIO(95-32); can be set on a signal-specific basis with the SCRB_PULLx_yGPIO SCRB.

¹⁾ Peak current

²⁾ Average current

³⁾ merged to GND on substrate

⁴⁾ merged to VDD_CORE on the substrate, therefore included in the VDD_CORE number

Table 2-2: Detailed Signal Description

	ERTEC 200P-3 ASIC																	
IQ ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	omen niemob vlouus	ERTEC 200P Location
REF_CLK	1	out		LNBD12MDSTPS33	inout	8	8	50	-	25	1	-	-	3V3	Reference Clock MII (ext. PHY)		VDD33	A8
BYP_CLK	1	in		LNBD12MDSTPS33	inout	-	-	-	-	-	-	-	-	3V3	Clock for F-Timer		VDD33	E12
XRESET	1	in		LNBINST33	in	-	-	-	-	-	-	-	ST	3V3	PowerOn-Reset (lowaktiv)		VDD33	D9
XTAL1	1	in		LNAINHV	in	-	-	-	-	-	-	-	-	3V3	Oscillator in / Clk_in for oscillator bypass		VDD33	A9
XTAL2	1	out		LNOSCMD33O	out	2	2	20	-	25	1	-	-	3V3	Oscillator		VDD33	B9
TEST	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	-	3V3	Test pin, has to be tied to GND in normal operation mode		VDD33	B10
TMC1	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	-	3V3	Test Mode, has to be tied to GND in normal operation mode	•	VDD_XHIF	Т6
TMC2	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	-	3V3	Test Mode, has to be tied to GND in normal operation mode		VDD33	A7
TACT	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	-	3V3	Test pin, has to be tied to GND in normal operation mode		VDD33	B8
TMS	1	in		LNBD12MDSTPS33	inout	-	-	-	UP	-	-	-	ST	3V3	JTAG: Test Mode Select		VDD33	E13
XTRST	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	ST	3V3	JTAG: Reset		VDD33	B17
тск	1	in		LNBD12MDSTPS33	inout	-	-	-	DN	-	-	-	ST	3V3	JTAG: Clock		VDD33	D16
RTCK	1	out		LNBD12MDSTPS33	inout	8	8	50	-	32	1	-	-	3V3	JTAG: Sync TCK		VDD33	B16
TDI	1	in		LNBD12MDSTPS33	inout	-	-	-	UP	-	-	-	ST	3V3	JTAG: Data In		VDD33	A16
TDO	1	out		LNBD12MDSTPS33	inout	8	8	50	-	32	0.5	-	-	3V3	JTAG: Data Out		VDD33	C16

	ERTEC 200P-3 ASIC																	
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin Ioad/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	Aldqus Ol	Function	supply domain	subolv domain name	ERTEC 200P Location
XSRST	1	bidi		LNBD12MDSTPS33	inout	8	8	50	UP	0.1	0.1	-	ST	3V3	System-Reset for Debugging		VDD33	C10
TAP_SEL	1	in		LNBD12MDSTPS33	inout	-	-	-	-	-	-	-	ST	3V3	TAP Select Signal: 0 = JTAG for debug 1 = JTAG for BS		VDD33	A17
CHAIN_CTRL	1	in		LNBD12MDSTPS33	inout	-	-	-	-	-	-	-	ST	3V3	Reserved		VDD33	E15
A0	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	-	42	0.1	-	-	1V8	EMC Address Bus Pin 0	•	VDD_EMC	N18
A1	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6 / 8	20	-	42	0.1	-	-	1V8	EMC Address Bus Pin 1		VDD_EMC	R20
A2	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 2 DEV_HWK(5)		VDD_EMC	T20
A3	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 3 DEV_HWK(6)		VDD_EMC	R19
A4	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 4 DEV_HWK(7)		VDD_EMC	P16
A5	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 5		VDD_EMC	T18

							ERTE	EC 20)P-:	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	sumly domain name	ERTEC 200P Location
A6	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 6		VDD_EMC	P17
A7	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 7		VDD_EMC	P20
A8	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 8 DEV_HWK(0)		VDD_EMC	P18
A9	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 9 DEV_HWK(1)		VDD_EMC	P19
A10	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 10 DEV_HWK(2)		VDD_EMC	N17
A11	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 11 DEV_HWK(3)		VDD_EMC	M18
A12	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 12 DEV_HWK(4)		VDD_EMC	M16
A13	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 13		VDD_EMC	L20
A14	1	bidi		ZLLNBD12MDSTPS33	inout	G2*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 14		VDD_EMC	K18
A15	1	bidi		LNBD12MDSTPS33	inout	G3*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 15 Boot(2)		VDD_EMC	J18

Copyright $\ensuremath{\mathbb{C}}$ Siemens AG 2023. All rights reserved

Technical data subject to change

					-		ERTE	EC 200)P-:	3 AS	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	lO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin Ioad/pF (Synthese)	uwop/dn-llud	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	subply domain name	ERTEC 200P Location
A16	1	bidi		LNBD12MDSTPS33	inout	G3*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 16 Boot(3)		VDD_EMC	J20
A17	1	bidi		LNBD12MDSTPS33	inout	G3 ^{*)}	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 17 Config(0)		VDD_EMC	H20
A18	1	bidi		LNBD12MDSTPS33	inout	G3*)	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 18 Config(1)		VDD_EMC	H18
A19	1	bidi		LNBD12MDSTPS33	inout	G3*)	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 19 Config(2)		VDD_EMC	J16
A20	1	bidi		LNBD12MDSTPS33	inout	G3 ^{*)}	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 20 Config(3)		VDD_EMC	H19
A21	1	bidi		LNBD12MDSTPS33	inout	G3 ^{*)}	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 21 Config(4)		VDD_EMC	G19
A22	1	bidi		LNBD12MDSTPS33	inout	G3 ^{*)}	6/8	20	DN	42	0.1	-	-	1V8	EMC Address Bus Pin 22 Config(5)		VDD_EMC	G20
A23	1	bidi		LNBD12MDSTPS33	inout	G3 ^{*)}	6/8	20	UP	42	0.1	-	-	1V8	EMC Address Bus Pin 23 Config(6)		VDD_EMC	H17
D0	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 0		VDD_EMC	A18
D1	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 1		VDD_EMC	B20
D2	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 2		VDD_EMC	C19

							ERTE	EC 200)P-:	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
D3	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 3		VDD_EMC	C18
D4	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 4		VDD_EMC	B19
D5	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6/12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 5		VDD_EMC	G16
D6	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 6		VDD_EMC	E17
D7	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6/12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 7		VDD_EMC	D20
D8	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 8		VDD_EMC	F18
D9	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 9		VDD_EMC	D19
D10	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6/12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 10		VDD_EMC	E20
D11	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 11		VDD_EMC	D17
D12	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 12		VDD_EMC	D18
D13	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6/12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 13		VDD_EMC	A19
D14	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 14		VDD_EMC	C20
D15	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 15		VDD_EMC	B18
D16	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 16		VDD_EMC	R17
D17	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 17		VDD_EMC	U17
D18	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 18		VDD_EMC	V20

							ERTE	EC 200)P-:	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
D19	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 19		VDD_EMC	V17
D20	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 20		VDD_EMC	W20
D21	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6/12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 21		VDD_EMC	V16
D22	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 22		VDD_EMC	Y19
D23	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 23		VDD_EMC	Y18
D24	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 24		VDD_EMC	Y17
D25	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 25		VDD_EMC	U16
D26	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 26		VDD_EMC	W17
D27	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 27		VDD_EMC	V18
D28	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 28		VDD_EMC	W18
D29	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 29		VDD_EMC	T17
D30	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 30		VDD_EMC	W19
D31	1	bidi		ZLLNBD12MDSTPS33	inout	G5 ^{*)}	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Data Bus Pin 31		VDD_EMC	V19
XBE0_DQM0	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	-	42	0.1	-	-	1V8	EMC Byte 0 Enable		VDD_EMC	F19
XBE1_DQM1	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	-	42	0.1	-	-	1V8	EMC Byte 1 Enable		VDD_EMC	F20
XBE2_DQM2	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	-	42	0.1	-	-	1V8	EMC Byte 2 Enable		VDD_EMC	T19

							ERTE	EC 20	0P-3	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
XBE3_DQM3	1	bidi		ZLLNBD12MDSTPS33	inout	G5*)	6 / 12	20	-	42	0.1	-	-	1V8	EMC Byte 3 Enable		VDD_EMC	U18
XCS_PER0	1	bidi		LNBD12MDSTPS33	inout	G7*)	6 / 12	20	-	1	1	-	-	1V8	EMC Bank 0 Chip Select		VDD_EMC	G18
XCS_PER1	1	bidi		LNBD12MDSTPS33	inout	G7*)	6 / 12	20	-	1	1	-	-	1V8	EMC Bank 1 Chip Select		VDD_EMC	G17
XCS_PER2	1	bidi		LNBD12MDSTPS33	inout	G7*)	6 / 12	20	-	1	1	-	-	1V8	EMC Bank 2 Chip Select		VDD_EMC	U20
XCS_PER3	1	bidi		LNBD12MDSTPS33	inout	G7*)	6 / 12	20	-	1	1	-	-	1V8	EMC Bank 3 Chip Select		VDD_EMC	R18
XWR	1	bidi		ZLLNBD12MDSTPS33	inout	G6 ^{*)}	6 / 12	20	-	42	0.1	-	-	1V8	EMC Write Signal		VDD_EMC	J17
XRD	1	bidi		ZLLNBD12MDSTPS33	inout	G6*)	6 / 12	20	-	42	0.1	-	-	1V8	EMC Read Signal		VDD_EMC	K16
XRDY_PER	1	bidi		ZLLNBD12MDSTPS33	inout	G4*)	6 / 12	20	UP	62.5	0.16	-	-	1V8	EMC Ready Signal		VDD_EMC	M17
DTXR	1	bidi		LNBD12MDSTPS33	inout	G1*)	6 / 12	20	DN	42	0.1	-	-	1V8	EMC Direction for ext. Driver Boot(0)		VDD_EMC	E18
XOE_DRIVER	1	bidi		LNBD12MDSTPS33	inout	G1 ^{*)}	6 / 12	20	UP	1	1	-	-	1V8	EMC Enable for ext. Driver Boot(1)		VDD_EMC	F17
CLK_O_SDRAM0	1	out		ZLLNBD12MDSTPS33	inout	G8*)	6/8	20	-	125	1	-	-	1V8	Feedback clock output		VDD_EMC	N20
CLK_O_SDRAM1	1	out		ZLLNBD12MDSTPS33	inout	G8*)	6/8	20	-	125	1	-	-	1V8	clock for the SDRAM device		VDD_EMC	L17
CLK_O_SDRAM2	1	out		ZLLNBD12MDSTPS33	inout	G8*)	6/8	20	-	125	1	-	-	1V8	clock for the SDRAM device		VDD_EMC	L18
CLK_I_SDRAM	1	in		LNBD12MDSTPS33	inout	-	-	-	-	-	-	-	-	1V8	Feedback clock for synchronization of read data. Must be connected, even if SDRAM is not used!		VDD_EMC	N16

							ERTE	EC 20)P-3	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	lO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	Aldqus Ol	Function	supply domain	supply domain name	ERTEC 200P Location
XCS_SDRAM	1	bidi		ZLLNBD12MDSTPS33	inout	G9*)	6 / 12	20	-	5	0.1	-	-	1V8	Chip select for SDRAM		VDD_EMC	M20
XRAS_SDRAM	1	out		ZLLNBD12MDSTPS33	inout	G9*)	6 / 12	20	-	5	0.1	-	-	1V8	Row address strobe		VDD_EMC	M19
XCAS_SDRAM	1	bidi		ZLLNBD12MDSTPS33	inout	G9*)	6 / 12	20	-	5	0.1	-	-	1V8	Column address strobe		VDD_EMC	L19
XWE_SDRAM	1	out		ZLLNBD12MDSTPS33	inout	G9*)	6 / 12	20	-	5	0.1	-	-	1V8	Write enable for SDRAM		VDD_EMC	K20
XAV_BF	1	in		LNBD12MDSTPS33	inout	-	-	-	UP	-	-	-	-	1V8	Address Valid BurstFlash> not used Boot(4)		VDD_EMC	K19
XRDY_BF	1	in		LNBD12MDSTPS33	inout	-	-	-	UP	-	-	-	-	1V8	Ready BurstFlash> not used EXT_DRIVER_DISABLE_CS0	•	VDD_EMC	K17
P1RXN	1	inout	100 ¹⁾		-	-	-	-	I	-	-	-	-	3V3	Port1 differential receive input	•	VDDIOA_PHY	Т3
P1RXP	1	inout	100 ¹⁾		-	-	-	-	-	-	-	-	-	3V3			VDDIOA_PHY	T4
P1TXN	1	inout	100 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3	Port1 differential transmit output		VDDIOA_PHY	R1
P1TXP	1	inout	100 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3			VDDIOA_PHY	R2
P1RDXP	1	in			in	-	-	-	-	-	-	-	-	3V3	Port1 FX differential receive input		VDDIOA_PHY	U2
P1RDXN	1	in			in	-	-	-	-	-	-	-	-	3V3	(PECL)		VDDIOA_PHY	U1
P1TDXP	1	out	55 ¹⁾		out	-	-	-	-	125	0.5	-	-	3V3	Port1 FX differential transmit		VDDIOA_PHY	W2
P1TDXN	1	out	55 ¹⁾		out	-	-	-	-	125	0.5	-	-	3V3	output (PECL)		VDDIOA_PHY	W1
P1SDXP	1	in			in	-	-	-	-	-	-	-	-	3V3	Port1 FX SD input (PECL)		VDDIOA_PHY	V4

							ERTE	EC 200)P-(3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
P1SDXN	1	in			in	-	-	-	-	-	-	-	-	3V3			VDDIOA_PHY	V3
P2RXN	1	inout	100 ¹⁾		in	-	-	-	-	-	-	-	-	3V3			VDDIOA_PHY	E3
P2RXP	1	inout	100 ¹⁾		in	-	-	-	-	-	-	-	-	3V3	Port2 differential receive input		VDDIOA_PHY	E4
P2TXN	1	inout	100 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3			VDDIOA_PHY	F1
P2TXP	1	inout	100 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3	Port2 differential transmit output		VDDIOA_PHY	F2
P2RDXP	1	in			in	-	-	-	-	-	-	-	-	3V3	Port2 FX differential receive input		VDDIOA_PHY	D2
P2RDXN	1	in			in	-	-	-	-	-	-	-	-	3V3	(PECL)		VDDIOA_PHY	D1
P2TDXP	1	out	55 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3	Port2 FX differential transmit		VDDIOA_PHY	B2
P2TDXN	1	out	55 ¹⁾		-	-	-	-	-	125	0.5	-	-	3V3	output (PECL)		VDDIOA_PHY	B1
P2SDXP	1	in			in	-	-	-	-	-	-	-	-	3V3			VDDIOA_PHY	C4
P2SDXN	1	in			in	-	-	-	-	-	-	-	-	3V3	Port2 FX SD input (PECL)	•	VDDIOA_PHY	C3
P1FXEN	1	out			out	12	12	20	-	0	-	-	-	3V3	Port1 FX enable	•	VDDIOD_PHY	P3
P2FXEN	1	out			out	12	12	20	-	0	-	-	-	3V3	Port2 FX enable	•	VDDIOD_PHY	G3
L_PHY_1	1	out		LNBD12MDSTPS33	inout	8	8	20	-	0.1	0.1	-	-	3V3	Link LED PHY Port 1		VDD33	D5
A_PHY_1	1	out		LNBD12MDSTPS33	inout	8	8	20	-	0.1	0.1	-	-	3V3	Activity LED PHY Port 1		VDD33	A3
L_PHY_2	1	out		LNBD12MDSTPS33	inout	8	8	20	-	0.1	0.1	-	-	3V3	Link LED PHY Port 2		VDD33	E6

							ERTE	EC 200)P-:	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	amen niemob vlouus	ERTEC 200P Location
A_PHY_2	1	out		LNBD12MDSTPS33	inout	8	8	20	-	0.1	0.1	-	-	3V3	Activity LED PHY Port 2		VDD33	A4
GPIO0_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 0 (interrupt capable) I- Filter: IN_Delay_0		VDD33	C15
GPIO1_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 1 (interrupt capable) I- Filter: IN_Delay_1		VDD33	D15
GPIO2_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 2 (interrupt capable) <i>I-</i> <i>Filter: IN_Delay_</i> 2		VDD33	B15
GPIO3_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 3 (interrupt capable) I- Filter: IN_Delay_3		VDD33	E14
GPIO4_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 4 (interrupt capable) I- Filter: IN_Delay_4		VDD33	D14
GPIO5_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 5 (interrupt capable) <i>I-</i> <i>Filter: IN_Delay_5</i>		VDD33	A15
GPIO6_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 6 (interrupt capable) I- Filter: IN_Delay_6		VDD33	B14
GPIO7_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 7 (interrupt capable) I- Filter: IN_Delay_7		VDD33	A14
GPIO8_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 8 (interrupt capable) I- Filter: IN_Delay_8		VDD33	E11
GPIO9_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 9 (interrupt capable) I- Filter: IN_Delay_9		VDD33	D11
GPIO10_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 10 (interrupt capable) I- Filter: IN_Delay_10		VDD33	B11

					-		ERTE	EC 200)P-:	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	lO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin Ioad/pF (Synthese)	hull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain		suppiy aomain name ERTEC 200P Location
GPIO11_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 11 (interrupt capable) I- Filter: IN_Delay_11		VDD33	A12
GPIO12_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 12 (interrupt capable) I- Filter: IN_Delay_12		VDD33	A11
GPIO13_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 13 (interrupt capable) <i>I-</i> <i>Filter: IN_Delay_13</i>		VDD33	D12
GPIO14_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 14 (interrupt capable) I- Filter: IN_Delay_14		VDD33	B12
GPIO15_INT	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 15 (interrupt capable) <i>I-</i> <i>Filter: IN_Delay_</i> 15		VDD33	B13
GPIO16	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 16		VDD33	D13
GPIO17	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 17		VDD33	C13
GPIO18	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 18		VDD33	A13
GPIO19	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 19		VDD33	C12
GPIO20	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 20		VDD33	C7
GPIO21	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 21		VDD33	B6
GPIO22	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 22		VDD33	D6
GPIO23	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 23		VDD33	B5

							ERTE	EC 200)P-(3 AS	SIC	-	-					
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin Ioad/pF (Synthese)	uwop/dn-IInd	fout/MHz	Activity	Low Noise	Schmitt-Trigger	Aldqus OI	Function	supply domain	subply domain name	ERTEC 200P Location
GPIO24	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 24		VDD33	A6
GPIO25	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 25		VDD33	A5
GPIO26	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 26		VDD33	C8
GPIO27	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 27		VDD33	C6
GPIO28	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 28		VDD33	D8
GPIO29	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 29		VDD33	B7
GPIO30	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 30		VDD33	D7
GPIO31	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.001	-	ST	3V3	GPIO 31		VDD33	E7
XHIF_A1	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 1 / GPIO 32 I-Filter: IN_Delay_16	•	VDD_OSPI	W10
XHIF_A2	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 2 / GPIO 33 I-Filter: IN Delay 17		VDD_OSPI	W11
XHIF_A3	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 3 / GPIO 34 I-Filter: IN_Delay_18		VDD_OSPI	W9
XHIF_A4	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 4 / GPIO 35 I-Filter: IN_Delay_19		VDD_OSPI	V11
XHIF_A5	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 5 / GPIO 36 I-Filter: IN_Delay_20		VDD_OSPI	Y10
XHIF_A6	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 6 / GPIO 37 I-Filter: IN_Delay_21		VDD_OSPI	Y8
XHIF_A7	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 7 / GPIO 38 I-Filter: IN_Delay_22		VDD_OSPI	Y9
XHIF_A8	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 8 / GPIO 39 I-Filter: IN_Delay_23		VDD_OSPI	Y11

							ERTE	EC 200)P-	3 A S	SIC							
IO ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
XHIF_A9	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 9 / GPIO 40 I-Filter: IN_Delay_24		VDD_OSPI	W8
XHIF_A10	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 10 / GPIO 41 I-Filter: IN_Delay_25		VDD_OSPI	W7
XHIF_A11	1	bidi		LNBD12MDSTPS33C2	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 11 / GPIO 42 I-Filter: IN_Delay_26	•	VDD_OSPI	Y7
XHIF_A12	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 12 / GPIO 43 I-Filter: IN_Delay_27	•	VDD_XHIF	V6
XHIF_A13	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 13 / GPIO 44 I-Filter: IN_Delay_28		VDD_XHIF	Y6
XHIF_A14	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 14 / GPIO 45 I-Filter: IN_Delay_29		VDD_XHIF	W13
XHIF_A15	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 15 / GPIO 46 I-Filter: IN_Delay_30		VDD_XHIF	U7
XHIF_A16	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 16 / GPIO 47 I-Filter: IN_Delay_31		VDD_XHIF	U9
XHIF_A17	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 17 / GPIO 48 I-Filter: IN_Delay_32		VDD_XHIF	V8
XHIF_A18	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 18 / GPIO 49 I-Filter: IN_Delay_33		VDD_XHIF	Т8
XHIF_A19	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 19 / GPIO 50 I-Filter: IN_Delay_34		VDD_XHIF	T7
XHIF_SEG_2	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 22 / GPIO 51 I-Filter: IN_Delay_37		VDD_XHIF	W6
XHIF_SEG_0	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 20 / GPIO 52 I-Filter: IN_Delay_35		VDD_XHIF	Y3
XHIF_SEG_1	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Address Bus Pin 21 / GPIO 53 I-Filter: IN Delay 36		VDD_XHIF	W5

							ERTE	EC 200)P-(3 A S	SIC							
IQ ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
XHIF_XRDY	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.100	-	ST	1V8/3V3	XHIF Ready Signal, polarity adjustable / GPIO 54 I-Filter: IN_Delay_46		VDD_XHIF	J1
XHIF_XIRQ	1	bidi		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.100	-	ST	1V8/3V3	XHIF Interrupt Output / GPIO 55 I-Filter: IN_Delay_47		VDD_XHIF	N4
XHIF_XWR	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Write Signal, lowactive / GPIO 56 I-Filter: IN_Delay_45		VDD_XHIF	U5
XHIF_XRD	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Read Signal, lowactive / GPIO 57 I-Filter: IN_Delay_44		VDD_XHIF	Y4
XHIF_XCS_R_A20	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Chip Select for Page Config. Registers / GPIO 58 I-Filter: IN_Delay_43		VDD_XHIF	Y5
XHIF_XCS_M	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Chip Select for AHB access / GPIO 59 I-Filter: IN_Delay_42		VDD_XHIF	V7
XHIF_XBE0	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Byte 0 Enable, lowactive / GPIO 60 I-Filter: IN_Delay_38		VDD_XHIF	N3
XHIF_XBE1	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Byte 1 Enable, lowactive / GPIO 61 I-Filter: IN_Delay_39		VDD_XHIF	N2
XHIF_XBE2	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Byte 2 Enable, lowactive / GPIO 62 I-Filter: IN_Delay_40		VDD_XHIF	Y12
XHIF_XBE3	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	-	-	ST	1V8/3V3	XHIF Byte 3 Enable, lowactive / GPIO 63 I-Filter: IN_Delay_41		VDD_XHIF	T11

ERTEC 200P-3 ASIC																		
IQ ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
XHIF_D0	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 0 / GPIO 64 -		VDD_XHIF	M3
XHIF_D1	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 1 / GPIO 65 - I-Filter: IN Delay 49		VDD_XHIF	К3
XHIF_D2	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 2 / GPIO 66 - I-Filter: IN_Delay_50		VDD_XHIF	H1
XHIF_D3	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 3 / GPIO 67 - I-Filter: IN_Delay_51		VDD_XHIF	N1
XHIF_D4	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 4 / GPIO 68 - I-Filter: IN_Delay_52		VDD_XHIF	M1
XHIF_D5	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 5 / GPIO 69 - I-Filter: IN_Delay_53		VDD_XHIF	K1
XHIF_D6	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 6 / GPIO 70 - I-Filter: IN_Delay_54		VDD_XHIF	J4
XHIF_D7	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 7 / GPIO 71 - I-Filter: IN_Delay_55		VDD_XHIF	L2
XHIF_D8	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 8 / GPIO 72 - I-Filter: IN_Delay_56		VDD_XHIF	L1
XHIF_D9	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 9 / GPIO 73 - I-Filter: IN_Delay_57		VDD_XHIF	K4
XHIF_D10	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 10 / GPIO 74 I-Filter: IN_Delay_58		VDD_XHIF	J2
XHIF_D11	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 11 / GPIO 75 I-Filter: IN_Delay_59		VDD_XHIF	L4
XHIF_D12	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 12 / GPIO 76 I-Filter: IN_Delay_60		VDD_XHIF	M4
XHIF_D13	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 13 / GPIO 77 I-Filter: IN_Delay_61		VDD_XHIF	J3
XHIF_D14	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 14 / GPIO 78 I-Filter: IN_Delay_62		VDD_XHIF	L3

ERTEC 200P-3 ASIC																		
IQ ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Function	supply domain	supply domain name	ERTEC 200P Location
XHIF_D15	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 15 / GPIO 79		VDD_XHIF	H2
XHIF_D16	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 16 / GPIO 80		VDD_XHIF	W15
XHIF_D17	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 17 / GPIO 81 I-Filter: IN_Delay_65		VDD_XHIF	U15
XHIF_D18	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 18 / GPIO 82 I-Filter: IN_Delay_66		VDD_XHIF	W14
XHIF_D19	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 19 / GPIO 83 I-Filter: IN_Delay_67		VDD_XHIF	Y16
XHIF_D20	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 20 / GPIO 84 I-Filter: IN_Delay_68		VDD_XHIF	U14
XHIF_D21	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 21 / GPIO 85 I-Filter: IN_Delay_69		VDD_XHIF	U11
XHIF_D22	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 22 / GPIO 86 I-Filter: IN_Delay_70		VDD_XHIF	Y14
XHIF_D23	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 23 / GPIO 87 I-Filter: IN_Delay_71		VDD_XHIF	Y15
XHIF_D24	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 24 / GPIO 88 I-Filter: IN_Delay_72		VDD_XHIF	T13
XHIF_D25	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 25 / GPIO 89 I-Filter: IN_Delay_73		VDD_XHIF	V15
XHIF_D26	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 26 / GPIO 90 I-Filter: IN_Delay_74		VDD_XHIF	Y13
XHIF_D27	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 27 / GPIO 91 I-Filter: IN_Delay_75		VDD_XHIF	V13
XHIF_D28	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 28 / GPIO 92 I-Filter: IN_Delay_76		VDD_XHIF	U12
XHIF_D29	1	bidi ⁴⁾		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 29 / GPIO 93 I-Filter: IN_Delay_77		VDD_XHIF	U13

							ERTE	EC 200)P-3	B AS	SIC							
	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	_	supply domain	supply domain name	ERTEC 200P Location
IO ring															Function			_
XHIF_D30	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 30 / GPIO 94 I-Filter: IN_Delay_78		VDD_XHIF	T12
XHIF_D31	1	bidi4)		LNBD12MDSTPS33	inout	**)	8	20	***)	125	0.050	-	ST	1V8/3V3	XHIF Data Bus Pin 31 / GPIO 95 I-Filter: IN_Delay_79	•	VDD_XHIF	W12
VQPS	1	in			in	-	-	-	-	-	-	-	-	2V5	Reserved tied to GND	•		J5

VDD_CORE	8		1.1 V (Core Supply)																
AVDD_PLL	1		1.1V analog voltage supply for 500 MHz PLL and for 1600 MHz PLL, requires external filtering																
VDDD_PHY	_ 4)	180 ²⁾	1.1V (PHY Digital Core Supply)																
VDDA_PHY	2	20 ²⁾	1.1V (PHY Analog Core Supply)																
VDD33	3		3.3 V (IO Supply)																
VDD_OSPI	2		1.8 V / 3.3V (IO Supply)																
VDD_XHIF	3		3.3V / 1.8V (HostIF IO Supply)																
VDD_EMC	3		1.8V (EMC IO Supply)																
VDDIOD_PHY	2	30 ²⁾	3.3V (PHY Digital I/O Supply)																
ERTEC 200P-3 ASIC)P-3	S AS	IC								
-------------------	--------------------------	---------------	-------------------	-----------	------------------------	----------------	--	---------------------------	--------------	----------	----------	-----------	-----------------	-----------	----------	--	---------------	--------------------	---------------------
IQ ring	ERTEC 200P (LFBGA358)	I/O direction	I/O current/mA	IO buffer	Buffer direction	Drive strength	Drive strength in STA (1p8v / 3p3v)	Pin load/pF (Synthese)	Pull-up/down	fout/MHz	Activity	Low Noise	Schmitt-Trigger	IO supply	Eurotion		supply domain	suppiy aomain name	ERTEC 200P Location
VDDIOA_PHY	4		130 ²⁾					3.3V (I	PHY A	nalog l	/O Supp	oly)			Tunction				
AVDDHV_PLL	4					3.3V	analog vo	Itage supp	ly for !	500 MH	lz PLL a	and for	1600	MHz PLL					
VSS	105						Gro	und (inclu	des A(GND for	r PLLs a	and LV	DS)						
VSSD_PHY	_ 3)		180 ²⁾					PH	Y digit	al core	ground								
VSSIOD_PHY	_ 3)		30 ²⁾		PHY digital I/O ground														
VSSA_PHY	2		20 ²⁾					PH	Y anal	og core	ground								
VSSIOA_PHY	2		250 ²⁾					PH	IY ana	log I/O	ground								

2.2.1 Strapping Pins

While XRESET is active, the input values of the following pins are latched in:

Table 2-3: Strapping Pins

Package Ball Name	Strapping Information	Remark		
A_7	Reserved == 0	Values saved in SETUP_REG		
A_8	DEV_HWK(0)	01 301 02		
A_9	DEV_HWK(1)			
A_10	DEV_HWK(2)			
A_11	DEV_HWK(3)			
A_12	DEV_HWK(4)			
A_2	DEV_HWK(5)			
A_3	DEV_HWK(6)			
A_4	DEV_HWK(7)			
A_17	Config(0)	Values saved in		
A_18	Config(1)			
A_19	Config(2)			
A_20	Config(3)			
A_21	Config(4)			
A_22	Config(5)			
A_23	Config(6)			
DTXR	Boot(0)	Values saved in BOOT_REG		
XOE_DRIVER	Boot(1)	OT SCRB1		
A_15	Boot(2)			
A_16	Boot(3)			
XAV_BF	Boot(4)			
XRDY_BF	EXT_DRIVER_DISABLE_CS0	Values saved in EXT_DRIVER_EN of SCRB1		

Note

After XRESET is released, the values are stored. The values must stay stable for 500 ns after XRESET has been released. This is a difference compared to ERTEC 200P-2 (there only 120 ns are required).

For the configuration of Boot and Config modes external resistors must be used. The internal ones are not sufficient.

2.3 IO Timing

General rule:

For IO signals whose timing response is not detailed in the following chapters, there are no specific IO timing requirements. These signals therefore have default constraining, i.e. the selected constraining achieves IO timing closure without relaxing IO timing too much.

Figure 2-1: Definition of time reference

The constraint specifications correspond to the data sheet values as follows:

Input delay –min X	Input signal hold time => X
Input delay –max X	Input signal setup time => Period - X
Output delay –min X	Output signal hold time => X
Output delay –max X	Clock-to-output time of output signal => Period - X

2.3.1 EMC Timing

Note:

```
To achieve the timing below, configure EXTENDED_CONFIG.SODM = '0' (default value). EXTENDED_CONFIG.SODM = '1' is not permitted.
```

2.3.1.1 SRAM Timing

The use of XRDY_PER is optional and can be enabled with ASYNC_BANKx.EW. Wait states can be inserted if XRDY_PER is used.

For the asynchronous SRAM interface an "active interface" is selectable. Active interface means that at the end of a transfer the data bus is actively driven high for one AHB clock cycle. This is necessary, in combination with the use of internal Pull-up(s) to speed up the reloading of the wiring capacity. After the active phase the internal Pull-up(s) are driving the data bus and there is no need for external Pull-up(s) on the board.

2.3.1.1.1 SRAM Timing for read access

Figure 2-2: SRAM Timing for read access

Table 2-4: EMC Timing (1.8 V)

Parameter	Description	Min	Мах	depends on Register	Note
tr_su	Read Setup-Time	0 Tc - 4.3 ns	15 Tc + 3.5 ns	ASYNC_BANKx.R_SU	1)

Parameter	Description	Min	Мах	depends on Register	Note				
t _{R_STROBE}	Read Strobe-Time	1 Tc – 2.4 ns	64 Tc + 3.3 ns	ASYNC_BANKx.R_STROBE	1)				
t _{R_HOLD}	Read Hold-Time	1 Tc - 4.2 ns	8 Tc + 3.2 ns	ASYNC_BANKx.R_HOLD	1)				
tsu_data	Data Setup Time	5.8 ns							
th_data	Data Hold Time	0.0 ns							
trdy_active	Ready Active Time	8.0 ns		ASYNC_BANKx.EW					
trdy_delay	Ready Delay Time	2 Tc + 2.6 ns	3 Tc + 14.7 ns	ASYNC_BANKx.EW	2)				
t _{RDY_DELAY}	Ready Delay Time	1 Tc + 4.9 ns	2 Tc + 10.1 ns	ASYNC_BANKx.EW	3)				
t _{ADB}	Active data bus	2.4 ns	7.3 ns	EXTENDED_CONFIG.ADB					
t _{RECOV}	Recovery Phase	0 ns	120 ns	RECOV_CONFIG.RECOVx					
Based on	Tc = 8 ns (AHB Cloc	k = 125 MHz);							
	Load-value for Timing = 20 pF								
	Buffer Drive strength = 6 mA								
	IO-Voltage = 1.8 V								

¹⁾ BANK_0-4_CONFIG register

²⁾ in ASYNC_BANK0...4 register; Bit 31 – WSM = '0'

³⁾ in ASYNC_BANK0...4 register; Bit 31 – WSM = '1'

2.3.1.1.2 SRAM Timing for write access

Figure 2-3: SRAM Timing for write access

Parameter	Description	Min	Мах	depends on Register	Note				
t _{w_su}	Write Setup-Time	0 Tc - 3.9 ns	15 Tc + 3.4 ns	ASYNC_BANKx.W_SU	1)				
tw_strobe	Write Strobe-Time	1 Tc + 0.1 ns	64 Tc + 0.9 ns	ASYNC_BANKx.W_STROBE	1)				
tw_hold	Write Hold-Time	1 Tc - 4.2 ns	8 Tc + 3.3 ns	ASYNC_BANKx.W_HOLD	1)				
t _{RDY_ACTIVE}	Ready Active Time	8.0 ns		ASYNC_BANKx.EW					
t _{RDY_DELAY}	Ready Delay Time	2 Tc + 7.5 ns	3 Tc + 13.1 ns	ASYNC_BANKx.EW	2)				
trdy_delay	Ready Delay Time	1 Tc + 7.5 ns	2 Tc + 13.1 ns	ASYNC_BANKx.EW	3)				
tadb	Active data bus	3.2 ns	9.5 ns	EXTENDED_CONFIG.ADB					
tRECOV	Recovery Phase	0 ns	120 ns	RECOV_CONFIG.RECOVx					
Based on	Tc = 8 ns (AHB Cloc	k = 125 MHz);	•						
	Load-value for Timing = 20 pF								
	Buffer Drive strength = 6 mA								
	IO-Voltage = 1.8 V								

Table 2-5: SRAM Timing (1.8 V)

¹⁾ BANK_0-4_CONFIG register

²⁾ in ASYNC_BANK0...4 register; Bit 31 – WSM = '0'

³⁾ in ASYNC_BANK0...4 register; Bit 31 – WSM = '1'

2.3.1.2 SDRAM Timing

The combination of the control signals XCS_DRAM, XRAS_SDRAM, XCAS_SDRAM, XWE_SDRAM and XBEy_DQMy in combination with the Address bus defines SDRAM commands in the following way:

Table 2-6: SDRAM Timing

SDRAM command	XCS_SDRAM	XRAS_SDRAM	XCAS_SDRAM	XWE_SDRAM	XBEy_DQMy	A	Description
COMMAND INHIBIT							
(NOP)	1	Х	Х	Х	Х	Х	No operation
NO OPERATION (NOP)	0	1	1	1	Х	Х	No operation
						BA/Ro	
ACTIVE	0	0	1	1	Х	W	Select bank and activate row
					1/		
READ	0	1	0	1	0	BA/Col	Select bank and column, and start READ Burst
					1/		
WRITE	0	1	0	0	0	BA/Col	Select bank and column, and start WRITE Burst
BURST TERMINATE	0	1	1	0	Х	Х	Terminate Burst sequence
PRECHARGE	0	0	1	0	Х	BA/A10	Deactivate row in bank or banks
AUTO REFRESH	0	0	0	1	Х	Х	Start auto refresh cycle
LOAD MODE						Op-	Setup of the device-specific configuration
REGISTER	0	0	0	0	Х	Code1	register
							Setup of the device-specific extended mode
LOAD EXTENDED						Op-	configuration register (e.g. mobile SDRAM
MODE REGISTER	0	0	0	0	Х	Code2	devices)

X means don't care.

y = 0, 1, 2, 3

2.3.1.2.1 SDRAM Timing for read access

The output signals are launched with CLK_O_SDRAMx, the input signals are latched in with CLK_I_SDRAM.

Figure 2-4: SDRAM Timing for read access

Note

The bank signals BA0, BA1 are part of the address bus A. They are presented separately for a better understanding.

Table 2-7: SDRAM	Timing for read	d access (1.8 V)
------------------	-----------------	------------------

Parameter	Description	Min	Max	depends on Register	Note					
trcd	RAS to CAS delay	16 ns	32 ns	EXTENDED_CONFIG.TRCD						
t _{CAS}	CAS Latency	16 ns	24 ns	SDRAM_CONFIG.CL						
t _{RP}	Row precharge latency	24 ns	24 ns							
t _{DS}	Data Setup Time	0.8 ns			CLK_I_SDRAM					
t _{DH}	Data Hold Time	1.3 ns			CLK_I_SDRAM					
Based on	Tc = 8 ns (AHB Clock = 125 MI	Hz);								
	Load-value for Timing = 20 pF	Load-value for Timing = 20 pF								
	Buffer Drive strength = 6 mA									
	IO-Voltage = 1.8 V									

Setup and hold times for address, command and data are the same as with write access. They can be found in the following chapter.

2.3.1.2.2 SDRAM Timing for write access

Figure 2-5: SDRAM Timing for write access

Note

The bank signals BA0, BA1 are part of the address bus A. They are presented separately for a better understanding

Parameter	Description	Min	Max	depends on Register	Note
tск	Clock Period	7.9 ns	8.1 ns	-	
tсмs	Command Setup Time	5.0 ns	-	-	
t _{СМН}	Command Hold Time	1.8 ns	-	-	
t _{AS}	Address Setup Time	5.0 ns	-	-	
t _{AH}	Address Hold Time	1.8 ns	-	-	

Table 2-8: SDRAM Timing for write access (1.8V)

t _{DS}	Data Setup Time	4.4 ns	-	-					
t _{DH}	Data Hold Time	1.6 ns	-	-					
t _{RCD}	RAS to CAS delay	16 ns	40 ns	EXTENDED_CONFIG.TRCD + 1					
t _{RAS}	Row Address Strobe	t _{RCD} + t _{WR}	1)						
t _{RC}	ROW cycle Time	t _{RCD} + t _{WR} + t _{RP}	-	-					
t _{WR}	Write to Precharge Time	16 ns	1)	-					
t _{RP}	Row precharge latency	24 ns	24 ns	-					
Based on	Tc = 8 ns (AHB Clock = 12	25 MHz);							
	Load-value for Timing = 20 pF								
	Buffer Drive strength = 6 mA								
	IO-Voltage = 1.8 V								

¹⁾ Depends on Refresh Cycle Time

2.3.2 XHIF Timing

2.3.2.1 Separate RD/WR

The following figure shows the timing, when the External Host initiates a Read Access.

Figure 2-6: XHIF Read Access

Table 2-9: Host Interface Timing for read (1.8 V)

Parameter	Description	Min	Мах
t _{CSRS}	Chip select asserted to read pulse asserted delay	4.0 ns ¹⁾	
t _{ARS}	Address valid to read pulse asserted setup time	3.5 ns	
t RRT	Read pulse asserted to ready deasserted delay	6.1 ns	20.8 ns

Copyright © Siemens AG 2023. All rights reserved 47 Technical data subject to change

t _{RDE}	Read pulse asserted to data enable delay	6.1 ns	21.1 ns	
t _{RAP}	Ready active pulse width	3.2 ns	10.8 ns	
t _{RTD}	Ready asserted to data valid delay		3.6 ns	
t RCSH	Read pulse deasserted to chip select deasserted delay	3.2 ns ²⁾		
traн	Address valid to read pulse deasserted hold time	3.6 ns		
t RDH	Data valid/enable to read pulse deasserted hold time	4.1 ns	21.5 ns	
t _{RR}	Read recovery time	12.6 ns		
Based on	Tc = 8 ns (AHB Clock = 125 MHz);			
	Load-value for Timing = 20 pF			
	Buffer Drive strength = 8 mA			
	IO-Voltage = 1.8 V			

 $^{1)}$ If tcsrs < 0, tars, trrt and trDe are related to the falling edge of XHIF_XCS

 $^{2)}$ If $t_{\rm RCSH}$ < 0, $t_{\rm RAH}$ and $t_{\rm RDH}$ are related to the rising edge of XHIF_XCS

Table 2-10: Host Interface	Timing f	or read ((3.3 V)
----------------------------	----------	-----------	---------

Parameter	Description	Min	Max
tcsrs	Chip select asserted to read pulse asserted delay	3.7 ns ¹⁾	
tars	Address valid to read pulse asserted setup time	4.0 ns	
t _{RRT}	Read pulse asserted to ready deasserted delay	4.2 ns	14.4 ns
t _{RDE}	Read pulse asserted to data enable delay	4.4 ns	14.7 ns
trap	Ready active pulse width	5.2 ns	9.6 ns
t rtd	Ready asserted to data valid delay		2.2 ns
t RCSH	Read pulse deasserted to chip select deasserted delay	3.2 ns ²⁾	
t _{RAH}	Address valid to read pulse deasserted hold time	4.1 ns	
t _{RDH}	Data valid/enable to read pulse deasserted hold time	3.7 ns	15.4 ns
t _{RR}	Read recovery time	13.1 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);		
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 3.3 V		

 $^{1)}$ If t_{CSRS} < 0, $t_{\text{ARS}},$ t_{RRT} and t_{RDE} are related to the falling edge of XHIF_XCS

 $^{2)}$ If $t_{\rm RCSH}$ < 0, $t_{\rm RAH}$ and $t_{\rm RDH}$ are related to the rising edge of XHIF_XCS

The following figure shows the timing, when the External Host initiates a **Write Access**:

Figure 2-7: XHIF Write Access

Parameter	Description	Min	Max
tcsws	Chip select asserted to write pulse asserted delay	2.1 ns ¹⁾	
taws	Address valid to write pulse asserted setup time	3.1 ns	
twrt	Write pulse asserted to ready deasserted delay	6.0 ns	21.1 ns
twde	Write pulse asserted to data enable setup	0 ns	t.b.d ns ³⁾
twdv	Write pulse asserted to data valid delay		15.2 ns
t RAP	Ready active pulse width	3.2 ns	10.8 ns
twcsн	Write pulse deasserted to chip select deasserted delay	3.0 ns ²⁾	
twaн	Address valid to write pulse deasserted hold time	3.4 ns	
t _{RTW}	Ready asserted to write pulse deasserted delay	0 ns	
t _{WDH}	Data valid/enabled to read pulse deasserted hold time	3.4 ns ²⁾	
t _{WR}	Write recovery time	12.7 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);		•
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 1.8 V		

 $^{1)}$ If tcsws < 0, taws, twrt and two are related to the falling edge of XHIF_XCS

 $^{2)}$ If twcsH < 0, twaH and twDH are related to the rising edge of XHIF_XCS

³⁾ twode may have any value, as long as it is assured that there is 1 idle cycle (of the XHIF clock period) guaranteed between the end of the preceding access and the start of the current access (indicated by the falling edge of XCS/XWR). Within this idle cycle no access is allowed at all.

Parameter	Description	Min	Max
tcsws	Chip select asserted to write pulse asserted delay	2.4 ns ¹⁾	
taws	Address valid to write pulse asserted setup time	4.0 ns	
twrt	Write pulse asserted to ready deasserted delay	4.2 ns	14.7 ns
twde	Write pulse asserted to data enable setup	0 ns	t.b.d ns ³⁾
twov	Write pulse asserted to data valid delay		15.2 ns
trap	Ready active pulse width	5.2 ns	9.6 ns
twcsн	Write pulse deasserted to chip select deasserted delay	3.0 ns ²⁾	
twaн	Address valid to write pulse deasserted hold time	4.0 ns	
t _{RTW}	Ready asserted to write pulse deasserted delay	0 ns	
twdh	Data valid/enabled to read pulse deasserted hold time	3.9 ns ²⁾	
t _{WR}	Write recovery time	13.2 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);		
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 3.3 V		

Table 2-12: Host Interface Timing for write (3.3 V)

 $^{1)}$ If t_{CSWS} < 0, $t_{\text{AWS}},\,t_{\text{WRT}}$ and t_{WDE} are related to the falling edge of XHIF_XCS

²⁾ If $t_{WCSH} < 0$, t_{WAH} and t_{WDH} are related to the rising edge of XHIF_XCS

³⁾ twDE may have any value, as long as it is assured that there is 1 idle cycle (of the XHIF clock period) guaranteed between the end of the preceding access and the start of the current access (indicated by the falling edge of XCS/XWR). Within this idle cycle no access is allowed at all.

2.3.2.2 Common RD/WR

The following figure shows the timing, when the External Host initiates a **Common Read Access**.

Figure 2-8: XHIF Common Read Access

Parameter	Description	Min	Мах		
t _{RCS}	Write signal deasserted to chip select asserted delay	10.3 ns			
t _{ACS}	Address valid to chip select asserted setup time	3.6 ns			
t _{CRT}	Chip select asserted to ready deasserted delay	4.1 ns	21.1 ns		
t _{CDE}	Chip select asserted to data enable delay	4.2 ns	21.1 ns		
t _{RAP}	Ready active pulse width	3.2 ns	10.8 ns		
t _{RTD}	Ready asserted to data valid delay		3.6 ns		
t _{CWH}	Chip select deasserted to write signal asserted delay	4.3 ns			
t _{CAH}	Address valid to chip select deasserted hold time	3.1 ns			
t _{RDH}	Data valid/enable to chip select deasserted hold time	4.1 ns	21.5 ns		
t _{RR}	Read recovery time	12.2 ns			
Based on	Tc = 8 ns (AHB Clock = 125 MHz);				
	Load-value for Timing = 20 pF				
	Buffer Drive strength = 8 mA				
	IO-Voltage = 1.8 V				

Table 2-13: Host Interface Timing for common read (1.8 V)

Parameter	Description	Min	Max
trcs	Write signal deasserted to chip select asserted delay	6.4 ns	
t _{ACS}	Address valid to chip select asserted setup time	4.1 ns	
t _{CRT}	Chip select asserted to ready deasserted delay	3.2 ns	14.7 ns
t _{CDE}	Chip select asserted to data enable delay	3.5 ns	14.7 ns
t _{RAP}	Ready active pulse width	5.2 ns	9.6 ns
t _{RTD}	Ready asserted to data valid delay		2.2 ns
t _{CWH}	Chip select deasserted to write signal asserted delay	4.1 ns	
t _{CAH}	Address valid to chip select deasserted hold time	3.6 ns	
t _{RDH}	Data valid/enable to chip select deasserted hold time	3.7 ns	15.4 ns
t _{RR}	Read recovery time	12.7 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);	·	
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 3.3V		

Table 2-14: Host Interface Timing for common read (3.3 V)

The following figure shows the timing, when the External Host initiates a Common Write Access:

Figure 2-9: XHIF Common Write Access

Table 2-15: Host Interface	Timing for common	write (1.8 V)
----------------------------	-------------------	---------------

Parameter	Description	Min	Max
twcs	Write signal asserted to chip select setup time	3.4 ns ¹⁾	
tacs	Address valid to chip select asserted setup time	3.6 ns	
t CRT	Chip select asserted to ready deasserted delay	4.1 ns	21.1 ns
t CDE	Chip select asserted to data enable setup	-2.5 ns	3.8 ns ²⁾
tcdv	Chip select asserted to data valid delay		15.0 ns
trap	Ready active pulse width	3.2 ns	10.8 ns
tсwн	Write signal deasserted to chip select deasserted delay	2.7 ns	
tсан	Address valid to chip select deasserted hold time	0 ns	
t _{RTC}	Ready asserted to chip select deasserted delay	0 ns	
t _{CDH}	Data valid/enabled to chip select deasserted hold time	0 ns ²⁾	
t _{WR}	Write recovery time	12.2 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);		
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 1.8 V		

¹⁾ It is important to meet the setup timing of the Write signals; otherwise the XHIF module is driving the data bus.

²⁾ t_{CDE} may have any value, as long as it is assured, that there is 1 idle cycle (of the XHIF clock period) guaranteed between the end of the preceding access and the start of the current access (indicated by the falling edge of XHIF_XCS). Within this idle cycle no access is allowed at all.

Parameter	Description	Min	Max
twcs	Write signal asserted to chip select setup time	3.3 ns ¹⁾	
t _{ACS}	Address valid to chip select asserted setup time	4.1 ns	
t _{CRT}	Chip select asserted to ready deasserted delay	3.7 ns	14.7 ns
t _{CDE}	Chip select asserted to data enable setup	-2.5 ns	4.3 ns ²⁾
t _{CDV}	Chip select asserted to data valid delay		15.0 ns
t _{RAP}	Ready active pulse width	5.2 ns	9.6 ns
t _{CWH}	Write signal deasserted to chip select deasserted delay	3.2 ns	
t _{CAH}	Address valid to chip select deasserted hold time	0 ns	
t _{RTC}	Ready asserted to chip select deasserted delay	0 ns	
t _{CDH}	Data valid/enabled to chip select deasserted hold time	0 ns ²⁾	
t _{WR}	Write recovery time	12.7 ns	
Based on	Tc = 8 ns (AHB Clock = 125 MHz);		
	Load-value for Timing = 20 pF		
	Buffer Drive strength = 8 mA		
	IO-Voltage = 3.3V		

Table 2-16: Host Interface Timing for common write (3.3 V)

¹⁾ It is important to meet the setup timing of the Write signals; otherwise the XHIF module is driving the data bus.

²⁾ t_{CDE} may have any value, as long as it is assured, that there is 1 idle cycle (of the XHIF clock period) guaranteed between the end of the preceding access and the start of the current access (indicated by the falling edge of XHIF_XCS). Within this idle cycle no access is allowed at all.

2.3.3 PNPLL Timing

A total of 21 PNPLL signals are sent to the ERTEC 200P top level from the PN-IP. Of these signals, the **nine** output signals PNPLL_out(8..0) can be connected to ext. pins over GPIOs. PNPLL_Extin can also be connected as an input signal from an ext.pin to the PNPLL over a GPIO.

One of the nine output signals PNPLL_out(8..0) can be used as SyncOut for measuring the synchronism of individual nodes in a network topology.

Multiplexers and GPIOs must be set accordingly on the ERTEC 200P top level.

PNPLL_OUT can be measured at the selected GPIO pin; the signal is generated as follows:

- to: Start of cycle, i.e. the time at which a clock edge switches the cycle timer from its maximum value to its minimum value.
- t1: pn_pll_o is output by PN-IP (output signal to entity).
- t2: The signal PNPLL_OUT appears at the external GPIO pin

Figure 2-10: PNPLL Timing

This produces the following time delay in the PN-IP:

	Time	Explanation	Min/Max (ns)
PN-IP	$t_0 \rightarrow t_1$	Time from Cycle_A transition until the internal PN-IP flip-flop of pn_pll_o(0) changes from 1 to 0.	24 ns (exactly three 8 ns clock cycles)
ERTEC 200P	$t_1 \rightarrow t_2$	Output_delay of one the following PNPLL output signals from the PN-IP to the GPIO pin.	See Table 2-17

Table 2-17: PNPLL Timing

Signal		Alternate Function	Input_	_delay	Load (pF)		Functional
(Input)	Ports		-min	-max	Min / Max	Reference	characteristics
PNPLL_EXTIN_A	GPIO9_INT	A	18.2 ns	30.9 ns	-	CLK_SYS	asynchronous
	GPIO_23	В	18.0 ns	30.9 ns	-	CLK_SYS	asynchronous
Signal			Clock-to-O	utput_delay		Poforonco	
(Output)			-min	-max		Reference	
PNPLL_OUT0	GPIO0_INT	A	3.5 ns	10.0 ns	20	CLK_SYS	asynchronous
	XHIF_XWR	С	3.0 ns	7.8 ns	20	CLK_SYS	asynchronous
PNPLL_OUT1	GPIO1_INT	A	3.5 ns	9.4 ns	20	CLK_SYS	asynchronous
	XHIF_XRD	С	3.3 ns	9.2 ns	20	CLK_SYS	asynchronous
PNPLL_OUT2	GPIO2_INT	A	3.7 ns	10.1 ns	20	CLK_SYS	asynchronous
	XHIF_XCS_R.	С	3.9 ns	10.5 ns	20	CLK_SYS	asynchronous
PNPLL_OUT3	GPIO3_INT	A	3.6 ns	9.8 ns	20	CLK_SYS	asynchronous
	XHIF_XCS_M	С	2.9 ns	7.9 ns	20	CLK_SYS	asynchronous
PNPLL_OUT4	GPIO4_INT	A	3.8 ns	10.6 ns	20	CLK_SYS	asynchronous
	XHIF_XBE0	С	2.9 ns	7.6 ns	20	CLK_SYS	asynchronous
PNPLL_OUT5	GPIO5_INT	A	3.7 ns	10.1 ns	20	CLK_SYS	asynchronous
	XHIF_XBE1	С	2.8 ns	7.4 ns	20	CLK_SYS	asynchronous
PNPLL_OUT6	GPIO6_INT	A	3.1 ns	7.6 ns	20	CLK_SYS	asynchronous
	GPIO29	С	2.8 ns	8.3 ns	20	CLK_SYS	asynchronous
PNPLL_OUT7	GPIO7_INT	A	3.5 ns	8.8 ns	20	CLK_SYS	asynchronous
	GPIO30	С	2.8 ns	7.3 ns	20	CLK_SYS	asynchronous
PNPLL_OUT8	GPIO8_INT	A	3.6 ns	9.5 ns	20	CLK_SYS	asynchronous
	GPIO31	С	2.8 ns	7.3 ns	20	CLK_SYS	asynchronous

Note: PNPLL_EXTIN_A input delay values contain 16.0 ns to 24.0 ns delay caused by synchronization mechanisms

Table 2-18: Timing for time synchronization

Signal	Ports	Alternate	Input_	_delay	Load (pF)	Reference	Functional
(Input)	1 0113	Function	-min	-max	Min / Max	Reference	characteristics
PNPLL_EXTIN_Time	GPIO12_INT	A	18.1 ns	30.2 ns	-	CLK_SYS	asynchronous
Signal			Clock-to-Output_delay				
(Output)			-min	-max			
PNPLL_Time_Out	GPIO11_INT	A	3.5 ns	9.8 ns	20	CLK_SYS	asynchronous
	GPIO28	C	3.5 ns	9.5 ns	20	CLK_SYS	asynchronous

Note: PNPLL_EXTIN_TIME input delay values contain 16.0 ns to 24.0 ns delay caused by synchronization mechanisms

Table 2-19: PNPLL triggered by internal sources

Signal	Source	-	de	lay	Load (pF)	Reference	Functional
(Input)			-min	-max	Min / Max		characteristics
PNPLL_EXTIN	ISOSYNC1PLL	-	17.0 ns	27.5 ns	-	CLK_SYS	asynchronous
	ISOSYNC2PLL	-	17.1 ns	27.1 ns	-	CLK_SYS	asynchronous
	PBUSPPLL						

Note: PNPLL_EXTIN delay values contain 16.0 ns to 24.0 ns delay caused by synchronization mechanisms

2.3.4 Peripheral Interface Timing

2.3.4.1 Local GPIO (Parallel) Timing

The GPIO interface is asynchronous to external signals. External inputs will be synchronized internally. All inputs have no timing relation from an external clock to internal clock of ERTEC 200P. All outputs have no timing relation from internal clock of ERTEC 200P to an external clock.

Table	2-20:	Local	GPIO	(Parallel)	Timing	(1.8 V)
				((

Symbol	Description	Min	Max	Unit	Note
T _{din}	Runtime of Input signals	1.9	10.8	ns	
T _{dout}	Runtime of Output signals	3.1	12.2	ns	
Tdin skew	Skew of Input signals		4.9	ns	
Tdout skew	Skew of Output signals		3.8	ns	
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 1.8 V				

Table 2-21: Local GPIO (Parallel) Timing (3.3 V)

Symbol	Description	Min	Max	Unit	Note
T _{din}	Runtime of Input signals	1.7	10.4	ns	
T _{dout}	Runtime of Output signals	2.3	7.2	ns	
Tdin skew	Skew of Input signals		6.3	ns	
T _{dout} skew	Skew of Output signals		2.4	ns	
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 3.3 V				

2.3.4.2 Local SPI (Serial) Timing

The frequency of SSPCLK (base frequency for SPI macro): f_{SSPCLK} = 125 MHz.

Figure 2-11: SPI (Serial) Timing

Table 2-22: Local SPI1 (Serial) Timing (1.8 V)

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	31.25	-	ns	Master
T _D	Valid delay	-0.5	0.8	ns	1)
Ts	Setup Time	14.4	-	ns	2)
Тн	Hold Time	0	-	ns	2)
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 1.8 V				

¹⁾ C_L = 20 pF

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

Table 2-23: Local SPI1 (Serial) Timing (3.3 V)

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	31.25	-	ns	Master
TD	Valid delay	-0.1	1.3	ns	1)
Ts	Setup Time	9.8	-	ns	2)
Тн	Hold Time	0	-	ns	2)
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 3.3 V				

¹⁾ C_L = 20 pF

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	31.25	-	ns	Master
T _D	Valid delay	-0.3	1.3	ns	1)
Ts	Setup Time	14.3	-	ns	2)
Тн	Hold Time	0	-	ns	2)
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 1.8 V				

Table 2-24: Local SPI2 (Serial) Timing (1.8 V)

¹⁾ $C_L = 20 \text{ pF}$

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

Table 2-25: Local SPI2 (Serial) Timing (3.3 V)

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	31.25	-	ns	Master
TD	Valid delay	0.2	1.5	ns	1)
Ts	Setup Time	9.9	-	ns	2)
Тн	Hold Time	0	-	ns	2)
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 3.3 V				

¹⁾ $C_L = 20 \text{ pF}$

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

2.3.5 SPI Timing

The frequency of SSPCLK (base frequency for SPI macro): $f_{SSPCLK} = 125 \text{ MHz}$.

Figure 2-12: SPI Timing

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	25	-	ns	Master
		150	-	ns	Slave ³⁾
T _D	Valid delay	-1.1	0.6	ns	Master ¹⁾
		19.5	34.5	ns	Slave ³⁾
Ts	Setup Time	10.7	-	ns	Master ²⁾
		-15.7	-	ns	Slave ^{2), 3)}
Тн	Hold Time	-3.6	-	ns	Master ²⁾
		26.2	-	ns	Slave ^{2), 3)}
TSFRMS	SFRMIN Setup Time	18.8	-	ns	
TSFRMH	SFRMIN Hold Time	7.9	-	ns	
Based on	Buffer Drive strength = 8 mA				
	IO-Voltage = 3.3 V				

¹⁾ C_L = 20 pF

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

³⁾ Slave-Mode : SCLK_IN is synchronized in (2 internal clocks)

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	25	-	ns	Master
		150	Max. Unit - ns - ns 1.7 ns 38.9 ns - ns	Slave ³⁾	
TD	Valid delay	-0.9	1.7	ns	Master ¹⁾
		21.8	38.9	Unit ns ns	Slave ³⁾
Ts	Setup Time	14.3	-	ns	Master ²⁾
		-15.8	-	ns	Slave ^{2), 3)}
Тн	Hold Time	-5.2	-	ns	Master ²⁾
		26.1	-	ns	Slave ^{2), 3)}
T _{SFRMS}	SFRMIN Setup Time	19.3	-	ns	
T _{SFRMH}	SFRMIN Hold Time	7.0	-	ns	
Based on	Buffer Drive strength = 8 mA				
	IO-Voltage = 3.3 V				

Table 2-27: SPI1 Timing via GPIO Alternate Function C

¹⁾ $C_L = 20 \text{ pF}$

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

³⁾ Slave-Mode : SCLK_IN is synchronized in (2 internal clocks)

Table 2-28: SPI2 Timing Via GPIO Alternate Function A

Symbol	Parameter	Min.	Max.	Unit	Note
Tc	Baudrate	25	-	ns	Master
		150	Max. Unit - ns - ns 0.3 ns 35.7 ns - ns	Slave ³⁾	
T _D	Valid delay	-1.3	0.3	ns	Master ¹⁾
		20.0	35.7	ns	Slave ³⁾
Ts	Setup Time	11.5	-	ns	Master ²⁾
		-15.7	-	ns	Slave ^{2), 3)}
Тн	Hold Time	-3.9	-	ns	Master ²⁾
		26.0	-	ns	Slave ^{2), 3)}
T _{SFRMS}	SFRMIN Setup Time	18.1	-	ns	
T _{SFRMH}	SFRMIN Hold Time	7.7	-	ns	
Based on	Buffer Drive strength = 8 mA			,	
	IO-Voltage = 3.3 V				

¹⁾ C_L = 20 pF

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (F_{SSPCLK}).

³⁾ Slave-Mode : SCLK_IN is synchronized in (2 internal clocks)

Symbol	Parameter	Min.	Max.	Unit	Note
Тс	Baudrate	25	-	ns	Master
		150	-	ns	Slave ³⁾
T _D	Valid delay	-1.1	0.6	ns	Master ¹⁾
		20.1	36.2	ns	Slave ³⁾
Ts	Setup Time	11.5	-	ns	Master ²⁾
		-16.0	-	ns	Slave ^{2), 3)}
Т _Н	Hold Time	-3.6	-	ns	Master ²⁾
		27.2	-	ns	Slave ^{2), 3)}
T _{SFRMS}	SFRMIN Setup Time	18.6	-	ns	
T _{SFRMH}	SFRMIN Hold Time	7.6	-	ns	
Based on	Buffer Drive strength = 8 mA				
	IO-Voltage = 3.3 V				

Table 2-29: SPI2 Timing via GPIO Alternate Function C

¹⁾ C_L = 20 pF

 $^{2)}$ Ts, Th > 1 x 125 MHz period; Inputs are synchronized with APB clock (FSSPCLK).

³⁾ Slave-Mode : SCLK_IN is synchronized in (2 internal clocks)

Note

Operation without SPI_FRAME_N:

If the ERTEC 200P-3 is connected as SPI slave to a standard controller (SPI master) that does not support the SPI_FRAME_N signal, the ERTEC 200P-3 is to be set as follows:

•	Configuration	of Motorola	format: SSPCR0.FRF = '00')	AND
---	---------------	-------------	----------------------------	-----

- Configuration of the SPI clock phase: SSPCR0.SPH = '1' AND
- GPIO pin SPI_FRAME_N (see chaper 2.2)
 - Connect with ext. Pull-down
 OR
 - Connect with int. Pull-down (PULLxx_yyGPIO = "11" OR
 - Do not select the alternate function (blocking value = '0' is active)

Please not the following restrictions in this operating mode:

In the SPI status register, SSPSR.BSY is not reset at the end of the transfer. Following a RESET, "zero data" is transferred when the first character (4-bit...16-bit, SSPCR0.DSS) is transferred from the SPI slave to the SPI master (return direction).

2.3.6 UART Timing

Table 2-30: UART1 Timing (1.8 V)

Signal	Output Runtime	e (ns)	Input Runtime (ns)	
orginar	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}
XHIF_A17 (U1_CTS)			2.7	8.5
XHIF_A18 (U1_DCD)			2.5	8.5
XHIF_A19 (U1_DSR)			2.5	8.4
XHIF_SEG_2 (U1_RI)			2.5	8.5
XHIF_SEG_0 (U1_RTS)	3.5	12.2		
XHIF_SEG_1 (U1_DTR)	3.3	12.3		
XHIF_XBE2 (U1_TXD)	3.6	12.8		
XHIF_XBE3 (U1_RXD)			2.8	9.5
Based on	Buffer Drive strength = 8 mA, pin load 20 pf			
	IO-Voltage = 1.8	V		

Table 2-31: UART1 Timing (3.3 V)

Signal	Output Runtime	e (ns)	Input Runtime (ns)	
orginar	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}
XHIF_A17 (U1_CTS)			2.5	8.1
XHIF_A18 (C) (U1_DCD)			2.3	8.1
XHIF_A19 (U1_DSR)			2.3	8.0
XHIF_SEG_2 (U1_RI)			2.3	8.0
XHIF_SEG_0 (U1_RTS)	2.7	7.0		
XHIF_SEG_1 (U1_DTR)	2.6	7.1		
XHIF_XBE2 (U1_TXD)	2.9	7.6		
XHIF_XBE3 (U1_RXD)			2.6	9.1
Based on	Buffer Drive strength = 8 mA, pin load 20 pf			
	IO-Voltage = 3.3 V			

Table 2-32: UART2 Timing

Signal	Output Runtime	e (ns)	Input Runtime	out Runtime (ns)	
	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}	
GPIO12_INT(B) (U2_CTS)			1.8	5.2	
GPIO13_INT(B) (U2_RTS)	3.2	8.7			
GPIO14_INT(B) (U2_TXD)	3.2	8.4			
GPIO15_INT(B) (U2_RXD)			2.1	6.3	
Based on	Buffer Drive strength = 8 mA, pin load 20 pf				
	IO-Voltage = 3.3 V				

Table 2-33: UART3 Timing

Signal	Output Runtime (ns)		Input Runtime (ns)	
0.9	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}
GPIO28(B) (U3_TXD)	3.1	8.4		
GPIO29(B) (U3_RXD)			1.8	5.6
Based on	Buffer Drive strength = 8 mA, pin load 20 pf			
	IO-Voltage = 3.3 V			

Table 2-34: UART4 Timing (1.8 V)

Signal	Output Runtime	(ns)	Input Runtime (ns)	
orginar	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}
XHIF_XRDY (U4_TXD)	3.5	12.2		
XHIF_IRQ (U4_RXD)			2.5	7.5
Based on	Buffer Drive strength = 8 mA, pin load 20 pf			
	IO-Voltage = 1.8 V			

Table 2-35: UART4 Timing (3.3 V)

Signal	Output Runtime (ns)		Input Runtime (ns)	
o giu	T _{OR min}	T _{OR max}	T _{IR min}	T _{IR max}
XHIF_XRDY (U4_TXD)	2.7	7.1		
XHIF_IRQ (U4_RXD)			2.3	7.0
Based on	Buffer Drive strength = 8 mA, pin load 20 pf			
	IO-Voltage = 3.3 V			

Copyright © Siemens AG 2023. All rights reserved 64 Technical data subject to change

2.3.7 I²C Timing

2.3.7.1 I²C – APB

Table 2-36: I²C - APB Timing

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	GPIO14_INT	SCLK Output delay	2.5	9.7	ns	
Tout SDIO	GPIO15_INT	SDIO Output delay	2.5	10.2	ns	
Tin SCLK	GPIO14_INT	SCLK Input delay	2.1	7.2	ns	
Tin SDIO	GPIO15_INT	SDIO Input delay	2.1	7.1	ns	
Based on		Buffer Drive strength = 8 mA, pin load 20 pf				
		IO-Voltage = 3.3 V				

Table 2-37: I²C - APB Timing Alternative 1

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	GPIO30	SCLK Output delay	1.9	8.4	ns	
Tout SDIO	GPIO31	SDIO Output delay	2.0	8.7	ns	
Tin SCLK	GPIO30	SCLK Input delay	1.9	7.6	ns	
Tin SDIO	GPIO31	SDIO Input delay	1.9	7.5	ns	
Based on		Buffer Drive strength = 8 mA, pin load 20 pf				
		IO-Voltage = 3.3 V				

Table 2-38: I²C - APB Timing Alternative 2 (1.8 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_A16	SCLK Output delay	2.1	13.3	ns	
Tout SDIO	XHIF_A17	SDIO Output delay	2.3	14.0	ns	
Tin SCLK	XHIF_A16	SCLK Input delay	2.1	7.4	ns	
Tin SDIO	XHIF_A17	SDIO Input delay	2.0	7.1	ns	
Based on		Buffer Drive strength = 8 mA, pin load 20 pf				
		IO-Voltage = 1.8 V				

Table 2-39: I²C - APB Timing Alternative 2 (3.3 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_A16	SCLK Output delay	1.8	8.1	ns	
Tout SDIO	XHIF_A17	SDIO Output delay	2.0	8.7	ns	
Tin SCLK	XHIF_A16	SCLK Input delay	1.9	6.9	ns	
T _{in SDIO}	XHIF_A17	SDIO Input delay	1.8	6.6	ns	

Based on	Buffer Drive strength = 8 mA, pin load 20 pf
	IO-Voltage = 3.3 V

2.3.7.2 I²C – PN-IP

Table 2-40: I²C - PN-IP Timing

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	GPIO5_INT	SCLK Output delay	2.8	11.6	ns	
Tout SDIO	GPIO4_INT	SDIO Output delay	3.1	11.7	ns	
Tin SCLK	GPIO5_INT	SCLK Input delay	3.2	11.4	ns	
Tin SDIO	GPIO4_INT	SDIO Input delay	3.0	11.0	ns	
Based on		Buffer Drive strength = 8 mA, pin load 20 pf				
		IO-Voltage = 3.3 V				

Table 2-41: I²C - PN-IP Timing Alternative 1

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	GPIO7_INT	SCLK Output delay	3.0	11.2	ns	
Tout SDIO	GPIO6_INT	SDIO Output delay	3.1	11.6	ns	
Tin SCLK	GPIO7_INT	SCLK Input delay	3.1	11.3	ns	
T _{in SDIO}	GPIO6_INT	SDIO Input delay	3.4	12.3	ns	
Based on		Buffer Drive strength = 8 mA, pin load 20 pf				
		IO-Voltage = 3.3 V				

Table 2-42: I²C - PN-IP Timing Alternative 2 (1.8 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_D17	SCLK Output delay	3.2	16.1	ns	
Tout SDIO	XHIF_D16	SDIO Output delay	3.3	16.2	ns	
Tin SCLK	XHIF_D17	SCLK Input delay	3.8	12.7	ns	
Tin SDIO	XHIF_D16	SDIO Input delay	3.6	12.8	ns	
Based on		Buffer Drive strength = 8 mA, pin loa	d 20 pf			
		IO-Voltage = 1.8 V				

Table 2-43: I²C - PN-IP Timing Alternative 2 (3.3 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_D17	SCLK Output delay	2.9	10.8	ns	
Tout SDIO	XHIF_D16	SDIO Output delay	3.1	11.0	ns	
Tin SCLK	XHIF_D17	SCLK Input delay	3.6	12.3	ns	

	XHIF_D16	SDIO Input delay	3.4	12.3	ns	
Based on		Buffer Drive strength = 8 mA, pin load	d 20 pf			
		IO-Voltage = 3.3 V				

Table 2-44: I²C - PN-IP Timing Alternative 3 (1.8 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_D19	SCLK Output delay	3.0	15.7	ns	
Tout SDIO	XHIF_D18	SDIO Output delay	3.1	15.9	ns	
Tin SCLK	XHIF_D19	SCLK Input delay	3.8	13.2	ns	
Tin SDIO	XHIF_D18	SDIO Input delay	3.8	13.5	ns	
Based on		Buffer Drive strength = 8 mA, pin load	20 pf			
		IO-Voltage = 1.8 V				

Table 2-45: I²C - PN-IP Timing Alternative 3 (3.3 V)

Symbol	Port	Parameter	Min.	Max.	Unit	Note
Tout SCLK	XHIF_D19	SCLK Output delay	2.7	10.4	ns	
Tout SDIO	XHIF_D18	SDIO Output delay	2.9	10.6	ns	
T _{in SCLK}	XHIF_D19	SCLK Input delay	3.6	12.8	ns	
T _{in SDIO}	XHIF_D18	SDIO Input delay	3.6	13.1	ns	
Based on		Buffer Drive strength = 8 mA, pin load	20 pf			
		IO-Voltage = 3.3 V				

2.3.8 GPIO Timing

The GPIO interface is asynchronous to external signals. External inputs will be synchronized internally. All inputs have no timing relation from an external clock to internal clock of ERTEC 200P. All outputs have no timing relation from internal clock of ERTEC 200P-3 to an external clock.

Table 2-46: GPIO Timing

Symbol	Description	Min	Мах	Unit	Note
T _{din}	Runtime of Input signals	1.2	9.2	ns	1)
T _{dout}	Runtime of Output signals	2.1	9.7	ns	1)
T _{din skew}	Skew of Input signals	-	7.1	ns	1)
T _{dout skew}	Skew of Output signals	-	5.3	ns	1)
Based on	Buffer Drive strength = 8mA				
	IO-Voltage = 3.3 V				

¹⁾ C_L = 20 pF

2.3.9 JTAG Timing

The JTAG interface consists of the TCK, TMS, TDI, TDO, and TRST signals. All input signals except TRST are clocked in with a TCK rising edge. The TDO signal is output with a TCK falling edge.

Figure 2-13: Debug interface

The JTAG clock is to be operated up to a frequency of 32 MHz (RTCK evaluation in the debugger). A minimum hold time of 0 ns shall be used for the inputs of the debug interface. Only a JTAG clock of up to 16 MHz can be used for debuggers that do not support RTCK.

2.3.10 OctalSPI Timing

Values required by the memories must correspond to the values provided by the ASIC and vice versa.

Symbol	Parameter (output: ASIC → memory)	Min.	Max.	Unit	Note	
Тоусн	D setup time to clock rise	3.7	-	ns	1)	
TDVCL	D setup time to clock fall	3.7	-	ns	1)	
Тснох	D hold time from clock rise	2.7	-	ns	1)	
TCLDX	D hold time from clock fall	2.7	-	ns	1)	
TSLCH	CS active setup time to clock rise	12.7	-	ns	1)	
Тснян	CS active hold time after clock rise	7.3	-	ns	1)	
TCLSH	CS active hold time after clock fall	7.3	-	ns	1)	
Symbol	Parameter (input: memory → ASIC)	Min.	Max.	Unit	Note	
	mode: without RXDS					
TCLQV	DQ valid after clock fall	-	10.5	ns	2)	
Тсноу	DQ valid after clock rise	-	10.3	ns	2)	
TCLQX	DQ invalid after clock fall	8.8	-	ns	3)	
Тснох	DQ invalid after clock rise	8.8	-	ns	3)	
	mode: internal RXDS					
T _{CLQV_rxds}	DQ valid after clock fall – internal RXDS	-	5.3	ns	2), 4)	
T _{CHQV_rxds}	DQ valid after clock rise – internal RXDS	-	5.3	ns	2), 4)	
T _{CLQX_rxds}	DQ invalid after clock fall – internal RXDS	1.2	-	ns	3), 4)	
$T_{CHQX_{rxds}}$	DQ invalid after clock rise – internal RXDS	1.2	-	ns	3), 4)	
	mode: external RXDS					
TDQSQ	DQS to DQ valid	-	1.3	ns	2)	
T _{DVW}	Data Valid Window	3.5	-	ns	3)	
Based on	Buffer driver strength = 8 mA, pin load 15 pf, DDR with 62.5 MHz clock frequency					

¹⁾ Value provided by ERTEC, value required by memory/board must be smaller

²⁾ Value required by ERTEC, value provided by memory/board must be smaller

³⁾ Value required by ERTEC, value provided by memory/board must be larger

⁴⁾ Internally generated RXDS can be shifted with a resolution of 1.0 ns. These values change accordingly in steps of 1.0 ns (e.g., 5.3 ns \rightarrow 6.3 ns, 1.2 ns \rightarrow 2.2 ns)

Note

Concerning mode "without RXDS":

This mode will not work with DDR at maximum SCLK frequency of 62.5 MHz. With SDR (or with 31.25 MHz) CLQX/CHQX improve by 8 ns.

Note that in this mode, the IP's internal sampling time can be shifted by multiples of 8 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 24 ns.

Concerning mode "internal RXDS":

In this mode, the IP's internal sampling time can be shifted by multiples of 1 ns by parameterization. The HWAL will take care of this. Default setting for the values above is a shift by 4 ns.

Symbol	Parameter (output: ASIC → memory)	Min.	Max.	Unit	Note		
Толсн	D setup time to clock rise	3.8	-	ns	1)		
TDVCL	D setup time to clock fall	3.3	-	ns	1)		
Тснох	D hold time from clock rise	2.3	-	ns	1)		
TCLDX	D hold time from clock fall	3.1	-	ns	1)		
TSLCH	CS active setup time to clock rise	12.1	-	ns	1)		
Тснян	CS active hold time after clock rise	7.5	-	ns	1)		
TCLSH	CS active hold time after clock fall	8.2	-	ns	1)		
Symbol	Parameter (input: memory \rightarrow ASIC)	Min.	Max.	Unit	Note		
	mode: without RXDS						
TCLQV	DQ valid after clock fall	-	6.9	ns	2)		
T _{CHQV}	DQ valid after clock rise	-	5.9	ns	2)		
T _{CLQX}	DQ invalid after clock fall	7.9	-	ns	3)		
T _{CHQX}	DQ invalid after clock rise	7.6	-	ns	3)		
	mode: internal RXDS						
T _{CLQV_rxds}	DQ valid after clock fall	-	5.2	ns	2), 4)		
T _{CHQV_rxds}	DQ valid after clock rise	-	5.2	ns	2), 4)		
T _{CLQX_rxds}	DQ invalid after clock fall	0.9	-	ns	3), 4)		
T _{CHQX_rxds}	DQ invalid after clock rise	0.9	-	ns	3), 4)		
	mode: external RXDS						
T _{DQSQ}	DQS to DQ valid	-	1.7	ns	2)		
T _{DVW}	Data Valid Window	3.5	-	ns	3)		
Based on	Buffer driver strength = 4 mA, pin load 15 pf, DDR with 62.5 MHz clock frequency						

Table 2-48: OctalSPI Timing (1.8 V at 15 pF load)

¹⁾ Value provided by ERTEC, value required by memory/board must be smaller

²⁾ Value required by ERTEC, value provided by memory/board must be smaller

³⁾ Value required by ERTEC, value provided by memory/board must be larger

⁴⁾ Internally generated RXDS can be shifted with a resolution of 1.0 ns. These values change accordingly in steps of 1.0 ns (e.g., 5.2 ns → 6.2 ns, 0.9ns → 1.9 ns)
Note

Concerning mode "without RXDS":

This mode will not work with DDR at maximum SCLK frequency of 62.5 MHz. With SDR (or with 31.25 MHz) CLQX/CHQX improve by 8 ns.

Note that in this mode, the IP's internal sampling time can be shifted by multiples of 8 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 24 ns.

Concerning mode "internal RXDS":

In this mode, the IP's internal sampling time can be shifted by multiples of 1 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 5 ns.

Symbol	Parameter (output: ASIC → memory)	Min.	Max.	Unit	Note		
Тоусн	D setup time to clock rise	3.7	-	ns	1)		
TDVCL	D setup time to clock fall	3.7	-	ns	1)		
Тснох	D hold time from clock rise	2.7	-	ns	1)		
TCLDX	D hold time from clock fall	2.8	-	ns	1)		
TSLCH	CS active setup time to clock rise	12.3	-	ns	1)		
Тснѕн	CS active hold time after clock rise	7.1	-	ns	1)		
TCLSH	CS active hold time after clock fall	7.2	-	ns	1)		
Symbol	Parameter (input: memory \rightarrow ASIC)	Max.	Unit	Note			
	mode: without RXDS						
TCLQV	DQ valid after clock fall	-	10.8	ns	2)		
TCHQV	DQ valid after clock rise	-	10.6	ns	2)		
T _{CLQX}	DQ invalid after clock fall	8.9	-	ns	3)		
T _{CHQX}	DQ invalid after clock rise		-	ns	3)		
	mode: internal RXDS						
T _{CLQV_rxds}	DQ valid after clock fall – internal RXDS	-	5.3	ns	2), 4)		
T _{CHQV_rxds}	DQ valid after clock rise – internal RXDS	-	5.3	ns	2), 4)		
T _{CLQX_rxds}	DQ invalid after clock fall – internal RXDS	1.2	-	ns	3), 4)		
TCHQX_rxds	DQ invalid after clock rise – internal RXDS	1.2	-	ns	3), 4)		
	mode: external RXDS						
TDQSQ	DQS to DQ valid	-	1.3	ns	2)		
T _{DVW}	Data Valid Window	3.5	-	ns	3)		
Based on	Buffer driver strength = 8 mA, pin load 10 pf, DDR with 62.5 MHz clock frequency						

Table 2-49: OctalSPI Timing (3.3 V at 10 pF load)

¹⁾ Value provided by ERTEC, value required by memory/board must be smaller

²⁾ Value required by ERTEC, value provided by memory/board must be smaller

³⁾ Value required by ERTEC, value provided by memory/board must be larger

⁴⁾ Internally generated RXDS can be shifted with a resolution of 1.0 ns. These values change accordingly in steps of 1.0 ns (e.g., 5.3 ns \rightarrow 6.3 ns, 1.2ns \rightarrow 2.2 ns)

Note

Concerning mode "without RXDS":

This mode will not work with DDR at maximum SCLK frequency of 62.5 MHz. With SDR (or with 31.25 MHz) CLQX/CHQX improve by 8 ns.

Note that in this mode, the IP's internal sampling time can be shifted by multiples of 8 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 24 ns.

Concerning mode "internal RXDS":

In this mode, the IP's internal sampling time can be shifted by multiples of 1 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 4 ns.

Symbol	Parameter (output: ASIC → memory)	Min.	Max.	Unit	Note		
Толсн	D setup time to clock rise	3.8	-	ns	1)		
TDVCL	D setup time to clock fall	3.3	-	ns	1)		
Тснох	D hold time from clock rise	2.3	-	ns	1)		
TCLDX	D hold time from clock fall	3.1	-	ns	1)		
TSLCH	CS active setup time to clock rise	12.1	-	ns	1)		
Тснян	CS active hold time after clock rise	7.5	-	ns	1)		
TCLSH	CS active hold time after clock fall	8.2	-	ns	1)		
Symbol	Parameter (input: memory \rightarrow ASIC)	Min.	Max.	Unit	Note		
	mode: without RXDS						
TCLQV	DQ valid after clock fall	-	6.9	ns	2)		
T _{CHQV}	DQ valid after clock rise	-	5.9	ns	2)		
T _{CLQX}	DQ invalid after clock fall	7.9	-	ns	3)		
Тснах	DQ invalid after clock rise	7.6	-	ns	3)		
	mode: internal RXDS						
T _{CLQV_rxds}	DQ valid after clock fall	-	5.2	ns	2), 4)		
T _{CHQV_rxds}	DQ valid after clock rise	-	5.2	ns	2), 4)		
T _{CLQX_rxds}	DQ invalid after clock fall	0.9	-	ns	3), 4)		
T _{CHQX_rxds}	DQ invalid after clock rise	0.9	-	ns	3), 4)		
	mode: external RXDS						
T _{DQSQ}	DQS to DQ valid	-	1.7	ns	2)		
T _{DVW}	Data Valid Window	3.5	-	ns	3)		
Based on	Buffer driver strength = 4 mA, pin load 10 pF, DDR with 62.5 MHz clock frequency						

Table 2-50: OctalSPI Timing (1.8 V at 10 pF load)

¹⁾ Value provided by ERTEC, value required by memory/board must be smaller

²⁾ Value required by ERTEC, value provided by memory/board must be smaller

³⁾ Value required by ERTEC, value provided by memory/board must be larger

⁴⁾ Internally generated RXDS can be shifted with a resolution of 1.0 ns. These values change accordingly in steps of 1.0 ns (e.g., 5.2 ns → 6.2 ns, 0.9 ns → 1.9 ns)

Note

Concerning mode "without RXDS":

This mode will not work with DDR at maximum SCLK frequency of 62.5 MHz. With SDR (or with 31.25 MHz) CLQX/CHQX improve by 8 ns.

Note that in this mode, the IP's internal sampling time can be shifted by multiples of 8 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 24 ns.

Concerning mode "internal RXDS":

In this mode, the IP's internal sampling time can be shifted by multiples of 1 ns by parameterization.

The HWAL will take care of this. Default setting for the values above is a shift by 5 ns.

3 Layout and Design Hints

3.1 Analog PLL

PLL_A (Module PLLTS40LPFRAC from Silicon Creation)

- Input Clock: 25 MHz
- Output Clock: 500 MHz (FBDV = 20, equals fvco)
- Integer Mode (DSMPD = '1')
- PD (pll_b_stby) should be activated for at least 1 µs at power-up (covered by Lock Timer1)
- $t_{Lock} = 60 \ \mu s$ (covered by Lock Timer2)
- Period Jitter = 467 fs

The main focus has to be set on the stability of the output clock-signal. For the whole line of resonator, oscillator and PLL the following accuracy is needed: $< \pm 100$ ps period jitter

Tabelle 3-1: PLL Wiring

Signal	Туре	Function	
BYPASS	IN	FREF is bypassed to FOUTPOSTDIV	0
CLKSSCG	OUT	Synchronization clock for spread spectrum modulation	open
DACPD	IN	Power down noise canceling DAC in FRAC mode	0
DSMPD	IN	Power down Delta-Sigma Modulator	1
FBDIV[11:0]	IN	PLL Feedback divide value	20
FOUT1PH0	OUT	Auxiliary 4 phase output at 0°	open
FOUT1PH180	OUT	Auxiliary 4 phase output at 180°	open
FOUT1PH270	OUT	Auxiliary 4 phase output at 270°	open
FOUT1PH90	OUT	Auxiliary 4 phase output at 90°	open
FOUT2	OUT	PLL auxiliary output (div 2)	open
FOUT3	OUT	PLL auxiliary output (div 6)	open
FOUT4	OUT	PLL auxiliary output (div 8)	open
FOUT4PHASEPD	IN	Power down of 4 phase clock generator	1
FOUTPOSTDIV	OUT	PLL post divided output	open
FOUTPOSTDIVPD	IN	Post divided power down	1
FOUTVCO	OUT	VCO rate output clock	clk_pll
FOUTVCOPD	IN	VCO rate output clock power down	0
FRAC[23:0]	IN	Fractional portion of feedback divide value	0

Signal	Туре	Function	
FREF	IN	Reference clock input	CLK_A_CTS
LOCK	OUT	Lock signal	open
PD	IN	Power Down for PLL	pll_a_stby
POSTDIV1[2:0]	IN	PLL post divide 1	1
POSTDIV2[2:0]	IN	PLL post divide 2	1
REFDIV[5:0]	IN	Reference divide value	1

3.2 EMC Measures

3.2.1 ESD Protection

ESD robustness

- Human Body Model (HBM) 1000 V
- Charge Device Model (CDM) 500 V

3.2.2 Immunity to ESD

The ERTEC 200P-3 ASIC and the systems/devices fitted with it are designed for EMC in accordance with [EN] IEC 61000-6-2 (Electromagnetic compatibility - Generic standards - Immunity for industrial environments) and [EN] IEC 61000-6-4 (Electromagnetic compatibility - Generic standards - Emission standard for industrial environments).

These standards are the device standards for use in industrial environments. For compliance with these device standards, however, the EMC of the individual integrated circuits used (in particular immunity to interference in operation) is decisive.

To ensure an ASIC is as immune as possible, great care must be taken in the design, the layout and the selection of IO cell characteristics to ensure immunity to interference in operation and to minimize emission.

3.2.3 Spike Filter

The same spike filters are implemented for the test inputs TAP_SEL and TACT at the input as for the reset inputs (XRESET, XSRST, XTRST) and for CHAIN_CTRL. The filters ensure that spikes <= 60 ns (best case) are suppressed. This ensures a time constant of 60 ns between the pin and function (low-pass).

Note

A spike at TAP_SEL, XTRST and/or TACT is not forwarded to the JTAG controller as this would require a sequence over TDI/TMS and TCK from the debugger.

The ERTEC 200P-3 does contain a spike filter of 60 ns (best case condition) for following signals:

- XRESET (Reset)
- XSRST (Debugger Reset)
- XTRST (JTAG Reset)
- TAP_SEL (TAP Select)
- CHAIN_CTRL (Multicore Debugging)
- TACT (Testmode)

Figure 3-1: Spike Filter Implementation

To ensure the XRESET-, XSRST-, XTRST-, TAP_SEL-, CHAIN_CTRL- and TACT-signals will not be blocked by the spike filter, the pulse width must be wider than 220 ns.

3.3 Crystal Oscillator Layout

ERTEC 200P-3 requires a 25 MHz clock source. There are 3 use cases to supply this clock:

- Use case 1: External crystal and internal oscillator
- Use case 2: External oscillator cell / CMOS clock input
- Use case 3: External MEMS oscillator

2 Pins/Balls are used to realize the clock supply:

- Input XTAL1
- Output XTAL2

3.3.1 Use case 1: External crystal, internal oscillator

Figure 3-2 shows the required circuit to connect a crystal to the ERTEC 200P-3.

Figure 3-2: Oscillator Circuitry¹

Rd is optional to reduce the driver level seen by the crystal and Rs can be used to determine the safety factor of the oscillator circuit.

The values of Cg and Cd depend on the chosen crystal CL and ERTEC IO pin capacity.

Pin input/ output capacity (incl. package):

Parameter	meter Signal/ Description		Pin	Value
C _{in}	XTAL1	Input	A9	1.80 pF
Cout	XTAL2	Output	B9	2.24 pF

¹ For fast startup applications it is required to use an external clock source.

The following oscillator crystals are recommended:

- TSX-3225/ NX2520SA
 - Epson: X 1E000021 013800
 - NDK: EXS00A-CS13406

Parameter	Description	Value
F	Nominal (fundamental) Frequency	25 MHz
Order	Overtone Order	Fundamental
ESR _{max}	Maximum Equivalent Series Resistor	≤40 Ω
CL	Load Capacitance	10 pF
DL _{max}	Maximum Drive Level	≤200 µW
F _{Tolerance}	Frequency Tolerance	40 ppm (@20 years)
Toperation	Operating Temperature	-40°C to +85°C

Equivalent crystal model:

Figure 3-3: Equivalent Crystal Model

Note

The oscillator frequency must be 25 MHz, otherwise the PLL will not operate properly.

If a different crystal is used the following conditions must be met:

- Crystal with 25MHz with a maximum of \pm 50ppm over the whole lifetime and temperature range.
- The values for Rd, C_{in}, C_{out} must be calculated accordingly.
- To meet the FSU (fast startup) requirement, the quartz startup time must be < 20 ms

PCB layout hints:

- Place the input and output pins of the oscillator and the resonator and external components close to each other and keep wiring as short as possible.
- Use a wiring as short and as thick as possible between the ground side of the capacitor and the ground pin of the ERTEC 200P.
- Keep the lead wire of the resonator and capacitor as short as possible and fix the resonator and capacitor to the printed circuit board to keep the influence of mechanical vibrations to a minimum.
- If possible, arrange the external constant portion so that it is surrounded by GND.

Figure 3-4: Oscillator Circuitry Layout Example

Note

For every PCB design the measurements for the startup time of the oscillator must be done with the above circuit. If necessary, the dimensioning of the circuit or the startup of the device must be adapted (extension of reset duration).

3.3.2 Use case 2: External oscillator cell / CMOS clock input

Figure 3-5: External Oscillator

The usage of an external oscillator is supported. The external oscillator is connected to XTAL1. XTAL2 can be left open.

3.3.3 Use case 3: External MEMS oscillator

MEMS oscillators with the following data (or better) can be used:

Parameter	Description	Range / Value		
F	Nominal Frequency	25 MHz		
F _{Tolerance}	Frequency Tolerance	+/-50 ppm (@20 years)		
TOperation	Operating Temperature	-40 °C to +105 °C		
Tjitt	Root Mean Square Period Jitter	5 ps (f = 25 MHz, Vdd = 3.3V)		
T _{pk}	Peak-to-peak Period Jitter	30 ps (f = 25 MHz, Vdd = 3.3V)		
T _{phj}	Root Mean Square Phase Jitter (random)	2 ps (f = 25 MHz, small integration bandwidth)		

3.4 Test Signal Configuration

Table 3-1: Test Signal Configuration

Test Pins	External Wiring in Function Mode	Internal Wiring
TEST	low-impedance to ground (GND)	- Pull-down (ca. 50kΩ) - no spike filter!
TACT	low-impedance to ground (GND)	- Pull-down (ca. 50kΩ) - spike filter < 60 ns
TAP_SEL	low-impedance to ground (GND)	- no pull! - spike filter < 60 ns
TMC1	straight to ground (GND)	- Pull-down (ca. 50kΩ) - no spike filter!
TMC2	straight to ground (GND)	- Pull-down (ca. 50kΩ) - no spike filter!

The module design must comply **strictly** with the external test signal configuration given in the table.

For the module test, the ERTEC 200P-3 can be switched to boundary scan mode by setting the test signals as shown in the following table:

TACT	TAP_SEL	TEST	TMC1	TMC2	Description
0	0	0	0	0	Function mode
1	1	0	0	0	ERTEC 200P-3 boundary scan mode

The boundary scan is controlled over the JTAG interface (see 2.3.9).

3.5 JTAG Wiring

The JTAG interface is an interface over which the boundary scan register can be controlled or which can be used for ERTEC 200P-3 debugging. The JTAG reset is purposefully implemented without an internal pull resistor so that various debugger connections are possible. A filter integrated in ERTEC 200P-3 ensures that spikes <= 60 ns (best case) at JTAG reset XTRST are suppressed (see 3.2.3).

The table below shows the various recommendations for external Pull-up/down configurations of the JTAG interface signals.

JTAG Signal	Signal Direction	ERTEC 200P -3 internal pull (see chapter. 2.2)	Circuit for Production (ETB <u>not</u> accessible via AHB)	Circuit for Debugging, ARM recommended (ETB accessible via AHB)	recommended JTAG circuit	Recommendation from Debug supplier (Lauterbach ¹)
XTRST	in	Pull-down	10k Pull-down	4k7 Pull-up	10k Pull-down default and 4k7 Pull- up Assembly option	You shall place a Pull-down resistor (1k - 47k) on this signal on target side, although this is not JTAG conform. It ensures the on-chip debug logic is inactive when the debugger is not connected. Pull-down ==> Production Pull-up ==> Debugging
RTCK	in/out	-	not necessary	4k7 Pull-down	4k7 Pull-down	If this is not required, then it can be used to compensate the propagation delays on driver and cable. This allows to reach higher JTAG clock frequencies. Therefore you need to feed-back the TCK signal buffered or unbuffered to this line. On an unbuffered feed-back it might have negative effect on signal reflection. Better provide a chance to cut the connection on the target (jumper or solder bridge) in case problems arise.
ТСК	In	Pull-down	not necessary	4k7 Pull-down	4k7 Pull-down	You shall place a Pull-up or Pull-down resistor (1k - 47k) on this line in order to give it a defined state even when the line is not driven by the debugger.
TDI	In	Pull-up	not necessary	4k7 Pull-up	4k7 Pull-up	You can place a Pull-up or Pull-down resistor (1k - 47k) on this line to ensure a defined state even when the line is not driven by the debugger.
TMS	In	Pull-up	not necessary	4k7 Pull-up	4k7 Pull-up	You can place a Pull-up or Pull-down resistor $(1k - 47k)$ on this line in order to give it a defined state even when the line is not driven by the debugger.
XSRST	In	Pull-up	not necessary because of internal Pull-up	not necessary, because of internal Pull-up	not necessary, because internal Pull-up	There might be the need to place a Pull-up (1k - 47k) on target side to avoid unintentional resets when the debugger is not connected and probably to strengthen the weak 47k Pull-up in the debug cable.
TDO	out	-	not necessary	not necessary	33Ω series resistor	You can place a 33 series resistor close to the processor for series termination. You can place a Pull-up or Pull-down resistor (1k - 47k) on this

¹ See document "ARM JTAG Interface Specification" from Lauterbach

JTAG Signal	Signal Direction	ERTEC 200P -3 internal pull (see chapter. 2.2)	Circuit for Production (ETB <u>not</u> accessible via AHB)	Circuit for Debugging, ARM recommended (ETB accessible via AHB)	recommended JTAG circuit	Recommendation from Debug supplier (Lauterbach ¹)
						line.

Note

To achieve the best possible resistance to interference on the module (see "Circuit for Production" column in the table above), the XTRST pin on the module must have a 10 K Ω Pulldown. This deactivates JTAG interface during operation, which means that noise pulses affecting the individual JTAG signals can no longer affect ERTEC 200P-3 function. If a debugger is used at the JTAG interface, the Pull-down has no effect as the debugger actively pulls the XTRST signal to '1'. Only AHB access to the ETM trace buffer SRAM is not possible in this configuration. If access from an AHB master (e.g. ARM926) to this SRAM (ETB) is required for test purposes, the XTRST pin requires a 10 K Ω Pull-up. Please note that AHB access to the ETM trace buffer SRAM is only possible in this case if no debugger is connected.

3.5.1 JTAG ID

The JTAG target ID (for debugging) of ERTEC 200P-3 is 0x022F0031. This is based on the specification from the vendor and is to be interpreted as follows:

Siemens-specific				Vendor-specific			
				(ID-Code = 0x18, 0	Continuation Code =	= 0)	
[31:28]	[27:24]	[23:16]	[15:12]	[11:8]	[7:5]	[4:1]	[0]
Revision ID	ASIC ID	Siemens I defined b TOS	D Drive y LOW	PERIPHID4(3:0) (Continuation code)	PERIPHID2(2:0) (ID-Code)	PERIPHID1(7:4) (ID-Code)	Drive HIGH
0x0	0x2	0x2F	0x0	0x0	0x1	0x8	0x1

3.6 PHY Wiring

3.6.1 PHY-TX Wiring

Observe the following design recommendations for the UTP (Unshielded Twisted Pair) interface:

- RX and TX pairs must be routed 100 Ω differential.
- Differential lengths for each pair must match in length.
- Transformer must be placed as close as possible to the ERTEC 200P-3 ASIC.
- Center tap of transformer must be connected with 10 Ω series resistor to 3.3V_Analog.
- 49.9 Ω termination resistors must be placed as close as possible to the ERTEC 200P-3 ASIC.
- Analog signals must be placed referenced to analog ground plane or common plane (same as digital) and must not be coupled with other signals.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit				
	100BASE-TX, 10BASE-T Transmitter									
Output common mode voltage	Vocm, tp	with termination	0.65 * V _{DDIOA}		Vddioa	V				
Differential Output Voltage Positive polarity	V ⁺ out_10	10BASE-T 100Ohm term at transformer secondary side drive V ⁺ _{out_10}	2.2	2.5	2.8	Vp				
Differential Output Current Positive polarity I ⁺ TP_TX_P_10 - I ⁺ TP_TX_N_10	I+ _{o10}	10BASE-T drive V ⁺ _{out_10}	-112	-100	-88	mA				
Output current into TP_TX_P Positive polarity	I+TP_TX_P_10	10BASE-T drive V+ _{out_10} V _{TP_TX_P} > 1V	2.2	2.5	2.8	mA				
Output current into TP_TX_N Positive polarity	I+TP_TX_N_10	10BASE-T drive V+ _{out_10} V _{TP_TX_N} > 1V	90	102.5	115	mA				
Differential Output Voltage Negative polarity	V⁻out_10	10BASE-T 1000hm term at transformer secondary side drive V ⁻ out_10	-2.8	-2.5	-2.2	Vp				
Differential Output Current Negative polarity I ⁻ TP_TX_P_10 - I ⁻ TP_TX_N_10	l ⁻ ₀10	10BASE-T, drive V ⁻ _{out_10}	88	100	112	mA				
Output current into TP_TX_P Negative polarity	I ⁻ tp_tx_p_10	10BASE-T drive V ⁻ _{out_10} V _{TP_TX_P} > 1V	90	102.5	115	mA				
Output current into	I ⁻ TP_TX_N_10	10BASE-T	2.2	2.5	2.8	mA				

Table 3-2: Electrical Characteristics Twisted Pair

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
TP_TX_N Negative polarity		drive V ⁻ _{out_10} V _{TP_TX_N} > 1V				
Differential Output Current Mid value	М _{о10}	10BASE-T, mid value	-5	0	5	mA
I ^M TP_TX_P_10 - I ^M TP_TX_N_10						
Output current into TP_TX_P	I ^M TP_TX_P_10	10BASE-T	46.2	52.5	58.8	mA
		V _{TP_TX_P} >1V				
Output current into TP_TX_N	I ^M TP_TX_N_10	10BASE-T	46.2	52.5	58.8	mA
		mid value				
Differential Output Voltage	V ⁺ out	100BASE-TX	0.95		1.05	Vp
Positive polarity	• out	100Ohm term at	0.00			••
		drive V ⁺ out				
Differential Output Current	I + ₀₁₀₀	100BASE-TX	-42.4		-	mA
Positive polarity		drive V ⁺ out			40.74	
I ⁺ TP_TX_P_100 - I ⁺ TP_TX_N_100						
Output current into	I+ TP_TX_P_100	100BASE-TX	2.8	-	3.5	mA
		drive V ⁺ out				
		V _{TP_TX_P} >2V				
Output current into	I+ TP_TX_N_100	100BASE-TX	43.9	-	45.9	mA
		drive V ⁺ out				
		VTP_TX_P>2V				
Differential Output Voltage	V ⁻ out	100BASE-TX	-0.95	-	-1.05	Vp
Negative polarity		1000hm term at transformer secondary side				
Differential Output Current	I- ₀₁₀₀	100BASE-TX	40.74	-	42.4	mA
Negative polarity		drive V ⁻ out				
I ⁻ TP_TX_P_100 - I ⁻ TP_TX_N_100						
Output current into	I ⁻ TP_TX_P_100	100BASE-TX	43.9	-	45.9	mA
IF_IX_F		drive V ⁻ out				
		high value				

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		V _{TP_TX_P} >2V				
Output current into TP_TX_N	I ⁻ tp_tx_n_100	100BASE-TX drive V ⁻ _{out} low value V _{TP_TX_N} >2V	2.8	-	3.5	mA
Differential Output Current Mid value I ^M TP_TX_P_100 - I ^M TP_TX_N_100	I ^м _{о100}	100BASE-TX mid value	-2	0	2	mA
Output current into TP_TX_P	I ^M TP_TX_P_100	100BASE-TX mid value V _{TP_TX_P} >2V	23.1	-	25.7	mA
Output current into TP_TX_N	I ^M TP_TX_N_100	100BASE-TX mid value V _{TP_TX_P} >2V	23.1	-	25.7	mA
Amplitude symmetry I+ ₀₁₀₀ /I- ₀₁₀₀	Amp _{Sym_100}	100BASE-TX 100Ohm term at transformer secondary side	0.98	-	1.02	-
Rise time (positive)	tor100	100BASE-TX MLT-3 10%-90%	3	4	5	ns
Fall time (negative)	t _{of100}	100BASE-TX MLT-3 90%-10%	3	4	5	ns
Rise time symmetry (positive)	S _{r100}	100BASE-TX			500	ps
Fall time symmetry (negative)	Sf100	100BASE-TX			500	ps
Rise to fall time symmetry	S _{rf100}	100BASE-TX			500	ps
	100BA	SE-TX, 10BASE-T Receiver				
Input common mode voltage	VICM,TP		0.9 * Vddioa		Vddioa	V

Figure 3-6 shows a typical UTP circuit with separate center taps on the magnetic.

Figure 3-6: PHY-TX Wiring

Note

UTP interface must fulfill ANSI X3.263-1995 FDDI specification.

3.6.2 PHY-TX Wiring – UTP port not used

Unused UTP port should be left open.

Figure 3-7: UTP circuit unused

3.6.3 PHY-FX Wiring

Observe the following design recommendations for the FX interface:

- It is strongly recommended to use PROFINET compliant POF Transceiver QFBR-5978AZ from company Avago.
- RX and TX pairs (LVPECL) must be routed 100 Ω differential.
- Differential lengths for each pair must match in length.
- Transceiver must be placed as close as possible to the ERTEC 200P-3 ASIC.
- The RX termination (130 Ω Pull-up and 82 Ω Pull-down) must be placed as close as possible to the ERTEC 200P-3 ASIC.
- RX and TX power supply on transceiver must be filtered separately.
- Pay attention to level translation between transceiver SD pin and ERTEC 200P-3 ASIC PHY input, see recommended circuit in Figure 3-8.
- Signals must be placed referenced to digital ground plane or common plane and must not be coupled with other signals.

Table 3-3: Electrical Characteristics Fiber

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Common Mode Voltage	V _{ICM,FX}	with termination	0.36 * V _{DDIOD}	82 / (82 + 130) * V _{DDIOD}	0.47 * V _{DDIOD}	V
Data input swing differential peak to peak	Vidiff,pp,FX		0.3	1.6	2.20	V
Data input low, single-ended	Vil,FX		0.5	0.876	1.5	V
Data input high, single- ended	Vih,FX		1.1	1.676	2.15	V
Duty cycle distortion	dcd _{i,FX}		-1		1	ns
Data dependent input jitter	ddj_rms _{i,FX}	PRBS7 input pattern	0		1.5	ns
Data differential input rise time	t _{ir,FX}	10% to 90%			2.2	ns
Data differential input fall time	t _{if,FX}	90% to 10%			2.2	ns
Common mode output voltage	Vocm,fx	with termination	V _{DDIOD} – 1.2	Vddiod – 1	V _{DDIOD} – 0.8	V
Data output swing differential peak to peak	Vodiffpp,FX	with termination	0.95		1.6	V
Data output low	Vol,FX	with termination	V _{DDIOD} – 1.54	V _{DDIOD} – 1.33	V _{DDIOD} – 1.13	V
Data output high	V _{oh,FX}	with termination	V _{DDIOD} - 0.77	V _{DDIOD} – 0.66	V _{DDIOD} – 0.56	V
Output current into FX_TX_P Positive polarity	I+FX_TX_P	without termination drive V _{oh,FX} V _{FX_TX_P} > V _{OCM,FX,min}	-10	0	10	uA
Output current into FX_TX_N Positive polarity	I+FX_TX_N	without termination drive V _{ol,FX} V _{FX_TX_P} > V _{OCM,FX,min}	15	19.5	25	mA
Output current into FX_TX_P	I-FX_TX_P	without termination	15	19.5	25	mA

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Negative polarity		drive V _{ol,FX} V _{FX_TX_P} > V _{OCM,FX,min}				
Output current into FX_TX_N Negative polarity	I-fx_tx_n	without termination drive V _{oh,FX} V _{FX_TX_P} > V _{OCM,FX,min}	-10	0	10	uA
Data output rise time	t _{or,FX}	10% to 90%, $C_{Lmax} =$ 20 pF, $C_L = C_P + C_N$, $0.9^*C_P < C_N < 1.1^*C_P$	0		1.9	ns
Data output fall time	t _{of,FX}	90% to 10%, $C_{Lmax} =$ 20 pF, $C_L = C_P + C_N$, $0.9^*C_P < C_N < 1.1^*C_P$	0		1.9	ns
Data output differential rise/fall time symmetry	t _{orfsym,FX}	torfsym,FX = tor,FX - tof,FX; tor,FX < 1 ns & tof,FX < 1 ns	-100		100	ps
Data output differential rise/fall time symmetry	t _{orfsym,FX}	$\begin{array}{rll} t_{orfsym,FX} &=& t_{or,FX} \;-\; t_{of,FX};\\ t_{or,FX} \geq 1 \;ns \;\&\; t_{of,FX} \geq 1 \;ns \end{array}$	-0.1 * tor,FX		0.1 * t _{or,FX}	ns
Data dependent jitter	ddj_rms _{o,FX}	PRBS7 output pattern	0		1.3	ns
Data differential overshoot	Vos,fx		0		0.1 * V _{odiffpp,FX}	V
Common Mode Voltage Ripple	Vocm,Ripple,pp,FX	Peak-to-peak value of (V _{oh,FX} + V _{ol,FX}) / 2	0		0.2	V

Figure 3-8 shows the recommended FX circuit.

Place near PHY / ERTEC 200P

Figure 3-8: PHY FX ciruit

3.6.4 PHY-FX Wiring – FX circuit not used

FX_TX_P/N signals on unused FX port should be left open, **FX_RX_P/N** and **FX_SD_P/N** inputs must be connected directly to GND, the GPIOs can be configured for alternate function.

Figure 3-9: PHY FX circuit unused pins

3.6.5 PHY-SD Wiring – Avago QFBR-5978AZ

The Avago QFBR-5978AZ has a single ended output and ERTEC 200P-3 ASIC has a differential LVPECL input and optionally also a CMOS input via GPIO (see chapter 3.6.5.2).

3.6.5.1 PxSD circuit

The following level translation circuit is recommended for direct connection of FX_SD_P/N signals. Comparator shall be placed near transceiver and PECL driver near ERTEC 200P-3 ASIC. The 3.3 V supply voltage tolerance for POF transceiver and SD level translation circuit is limited to +- 5%.

All resistors are +1% 1/16W

Figure 3-10: SD level translation circuit (FX_SD_P/N)

3.6.5.2 GPIO circuit

The following level translation circuit is recommended **when GPIOs are used**. Comparator must be placed near transceiver. The 3.3 V supply voltage tolerance for **POF transceiver** is limited to **+- 5%**.

Figure 3-11: SD level translation circuit (GPIO)

3.7 Wiring of unused pins

The following applies in general:

- IN and INOUT pins that do **not** have an internal pull resistor must be connected to an external pull resistor.
- If the internal Pull-up/down resistor of the GPIOs is **deactivated**, it must be activated by the SW or an external Pull-up/down resistor must be connected.

Table 3-4: Recommendation for handling special function signals	
---	--

Signal	Signal description	Dir	Function description	Ball
TEST	IC-Test-Mode	in	IC Test Mode	F12
			Select signal for ASIC test.	
			For normal operation this pin must be connected to GND.	
TMC1	Testmode_1	in	Test Mode Control	R9
			Signal for ASIC test.	
			For normal operation this pin must be connected to GND.	
TMC2	Testmode_2	in	Test Mode Control	F7
			Signal for ASIC test.	
			For normal operation this pin must be connected to GND.	
TACT	TESTACT-	ESTACT- in Special Test Mode TAP Controller		F9
	IAP-RESET		Used for Boundary scan test.	
			For normal operation this pin must be connected to GND.	
TAP_SE	TAP Select	in	TAP Select	E14
L			Used for Boundary scan test.	
			For normal operation this pin must be connected to GND.	
P1FXEN	Port 1 Fiber	out	Port 1 Fiber Optic Enable	V12
	Optic Enable		This pin is not used and must be unconnected.	
			The Fiber Optic transceiver must be enabled all the time by proper pull resistor.	
P2FXEN	Port 2 Fiber	out	Port 2 Fiber Optic Enable	A13
	Optic Enable		This pin is not used and must be unconnected.	
			The Fiber Optic transceiver must be enabled all the time by proper pull resistor.	
CLK_O_	EMC SDRAM	bi	Clock Output SDRAM 2	M15
SDRAM 2	Clock Out		In normal operation this signal is connected to second SDRAM, upper 16 Bit. If only one SDRAM is implemented an external Pull-up resistor must be connected.	

3.8 Operating Conditions

3.8.1 Absolute Maximum Ratings

Parameter	Symbol	Condition/Remark	Min	Тур.	Max	Unit
I/O supply voltage to GND	VDD_IO		-0.3		3.93	V
Core supply voltage to GND	VDD_CORE		-0.3		1.6	V
PLL_A digital supply voltage	AVDD_PLLA		-0.3		1.6	V
PLL_A analog supply voltage, filtered	AVDDHV_PLLA		-0.3		3.93	V
PLL_B digital supply voltage	AVDD_PLLB		-0.3		1.6	V
PLL_B analog supply voltage, filtered	AVDDHV_PLLB		-0.3		3.93	V
I/O voltage to GND		I/Os connected to LNBD12MDSTPS33 buffers	-0.3		3.93	V
		I/Os connected to ZLLNBD12MDSTPS33 buffers	-0.3		3.93	
		I/Os connected to LNBINST33 input buffers	-0.3		3.93	
Oscillator input	XCLK1	connected to LNAINHV buffer	-0.3		3.93	V
Oscillator output	XCLK2	connected to LNOSCMD33O buffer	-0.3		3.93	V

3.8.2 Conditions of Operation

Table	3-6:	Operating	conditions
-------	------	-----------	------------

Parameter	Symbol	Condition/Remark	Min	Тур.	Мах	Unit
Pin capacitance	CP	LNBD12MDSTPS33 with PAD		2.2		pF
		ZLLNBD12MDSTPS33 with PAD		2.2		
		ZLLNBD12MDSTPS33X2 with PAD		4.4		
		LNBINST33 with PAD		1.8		
		LNOSCMD33 with PAD		4.0		
		Supply voltages				
Core voltage supply	VDD_CORE		1.045	1.1	1.155	V
I/O voltage	VDD_IO		1.62	1.8	1.89	V
Supply			2.97	3.3	3.465	
PLL_A	AVDD_PLLA		1.045	1.1	1.155	V
supply voltage	AVDDHV_PLLB		1.62	3.3	3.63	
PLL_B	AVDD_PLLA		1.045	1.1	1.155	V
supply voltage	AVDDHV_PLLB		1.62	3.3	3.63	
Core voltage rise time	tr,vdd_core		10		100000	μs
I/O voltage rise time	tr,vdd_io		10		100000	μs
		Supply currents				
Core supply current	Ivdd_core	typ=TT/1.1V/25°C max=FF/1.155V/112°C		67.89	227.59	mA
I/O supply current	Ivdd_io	EMC/XHIF=1.8V typ=TT/1.8V/112°C max=FF/3.465V/1.89V/112°C		50.76	53.30	mA
PLL supply current	Iavdd_plla	FVCO=500MHz		0.8	1.56	uA/ MHz
	Iavddhv_pll_a			0.30	0.35	mA

Parameter	Symbol	Condition/Remark	Min	Тур.	Мах	Unit
	Iavdd_plla_b	VFCO=1600MHz		0.8	1.56	uA/ MHz
	Iavddhv_pll_b			1.72	2.02	mA
		Oscillator				
XTAL1 low level input voltage	VIL		-0.3		0.3*VDDIO	V
XTAL1 high level input voltage	Vін		0.7*VDDIO		VDDIO+0.3	V
XTAL1 rise/fall time	trf				16	ns
external clock source frequency	fın			25		MHz
GPIOs						
Input low level	VIL	LNBD12MDSTPS33 LNBINST33	-0.3		0.3*VDDIO	V
Input high level	Vін	LNBD12MDSTPS33 LNBINST33	0.7*VDDIO		VDDIO+0.3	V
Schmitt Trigger high to low threshold	V _N	LNBD12MDSTPS33 LNBINST33	0.25*VDDIO		0.65*VDDIO	V
Schmitt Trigger low to high voltage	VP	LNBD12MDSTPS33 LNBINST33	0.35*VDDIO		0.75*VDDIO	V
Schmitt Trigger Hysteresis	V _H	LNBD12MDSTPS33 LNBINST33	0.1*VDDIO		0.5*VDDIO	V
Output low level	Vol	LNBD12MDSTPS33 IOL=2mA(VDDIO min3.0 max3.6 DSTR0=0,DSTR1=0)	-		0.4	V
		LNBD12MDSTPS33 IOL=4mA(VDDIO min3.0 max3.6 DSTR0=1,DSTR1=0)	-		0.4	

Parameter	Symbol	Condition/Remark	Min	Тур.	Мах	Unit
		LNBD12MDSTPS33 IOL=100uA IOL=8mA(VDDIO min3.0 max3.6 DSTR0=0,DSTR1=1)	-		0.15*VDDIO ¹ 0.4	
		LNBD12MDSTPS33 IOL=12mA(VDDIO min3.0 max3.6 DSTR0=1,DSTR1=1)	-		0.4	
Output high level	Vон	LNBD12MDSTPS33 IOH=-2mA(VDDIO min3.0 max3.6 DSTR0=0,DSTR1=0)	2.4		-	V
		LNBD12MDSTPS33 IOH=-4mA(VDDIO min3.0 max3.6 DSTR0=1,DSTR1=0)	2.4		-	
		LNBD12MDSTPS33 IOH=-100uA IOH=-8mA(VDDIO min3.0 max3.6 DSTR0=0,DSTR1=1)	0.85*VDDIO ² 2.4		-	
		LNBD12MDSTPS33 IOH=-12mA(VDDIO min3.0 max3.6 DSTR1=1,DSTR1=1)	2.4		-	
Pull-up	R _{PU}	LNBD12MDSTPS33 LNBINST33	20		80	kΩ
Pull-down	R _{PD}	LNBD12MDSTPS33 LNBINST33	20		80	kΩ
Input current	lin	LNBD12MDSTPS33 LNBINST33 Input voltage = 0 Pull-up off	-10		10	μΑ
		LNBD12MDSTPS33 LNBINST33 Input voltage = 3.449 Pull-down off	-10		10	

 1 V_{OL}: The GPIO buffer meets both JESD8-23 (LVCMOS) and JESD8C (LVTTL) standards. JESD8-23 specifies a maximum V_{OL} level for 100µA load (0.15*VDDIO) and JESD8C for 8mA load (0.4V).

 2 V_{OH}: The GPIO buffer meets both JESD8-23 (LVCMOS) and JESD8C (LVTTL) standards. JESD8-23 specifies a minimum V_{OH} level for -100µA load (0.85*VDDIO) and JESD8C for -8mA load (2.4V).

Parameter	Symbol	Condition/Remark	Min	Тур.	Max	Unit
		LNBD12MDSTPS33 LNBINST33 Input voltage = 0 Pull-up 50kΩ	-200		10	
		LNBD12MDSTPS33 LNBINST33 Input voltage = 3.449 Pull-down = 50kΩ	-10		200	
Input rise time	tr	LNBD12MDSTPS33 LNBINST33 normal CMOs input			16	ns
		Schmitt Trigger input			16	ns
Input fall time	t _f	LNBD12MDSTPS33 LNBINST33 normal CMOs input			16	ns
		Schmitt Trigger input			16	ns

3.8.3 Ambient Conditions

Parameter	Symbol	Condition/Remark	Min	Тур.	Max	Unit
Ambient operating temperature	TA		-40		85	°C
Case operating termperature	Tc		-40		105	°C
Top of package temperature at center	T⊤		-40		105	°C
Junction operating temperature	Tj		-40		112	°C

3.8.4 Power Up

There is no set order for switches on the supply voltages. However, all must be activated within a period of 200 ms.

3.8.5 Wiring of CTRL-STBY

To ensure that the outputs remain at high-impedance upon power up, CTRL_STBY function is connected to the XRESET pin.

3.8.6 Power-Up Sequence (PLL)

Figure 3-12: Power-Up Sequence (PLL)

The standby signal (STBY) to the PLL is an extension of XRESET by 30 μ s.

3.8.7 PLL Behavior

3.8.7.1 Following quartz break

If the ext. quartz breaks, i.e. XTAL1/2 are

- open
- clamped to '0'
- clamped to '1',

a frequency of 100 MHz ... 300 MHz is established at the PLL output (free-running frequency).

3.8.7.2 External filtering

For optimal jitter performance, it is suggested to place external decoupling capacitors between each PLL power supply and VSS. This is most important for AVDDHV_PLL, which is sensitive to low frequency noise and can only be effectively filtered off-chip. It is highly recommended to decouple AVDD_PLL as well. For optimal decoupling it is suggested to use at least one large capacitor (e.g. 4.7 μ F) for each separate supply. Additionally, smaller capacitors (e.g. 100 nF or 10 nF) may be placed in parallel since the lead inductance of the large capacitor may be significant. The capacitors shall be placed with the smallest one closest to the chip, while larger capacitors can be placed further away. Capacitors with minimal lead inductance shall be selected. Ceramic-type capacitors work well. The capacitors shall be placed as close to the package pins as possible. No series impedance shall be added anywhere on the board, and impedance to the power supplies shall be minimized. Adding a series ferrite bead may help to attenuate high frequency noise. Commonly available ferrite beads may have only a few Ω at DC but have an impedance of several k Ω as low as 100 kHz.

3.8.7.3 Upon temporary clock failure

With 30 ps (see chapter 3.3.3) the period jitter is within the specified range provided the recommended filter connections for AVDD decoupling are used.

If the reference clock for the ERTEC 200P-3 PLL fails, the frequency will change continuously until it reaches the final value after ca. 30 $\mu s.$

3.9 Power Dissipation

Worst case power dissipation, related to technology, temperature, and power supply. ($T_J = 112^{\circ}C$, Power supply + 5%)

Use Case	Unit	ERTEC 200P-3
switchable I/O voltage	V	1.8
Core (CPUs, RAMs, Clock, Logic)	mW	262.9
Macros (PLLs)	mW	2.3
PN-PHY	mW	360
3.3 V I/Os	mW	23.9
1.8 V I/Os	mW	69.2
1.8 V / 3.3 V I/Os	mW	18.5
total		736.8

Table 3-8: Power Dissipation with 1.8 V / 3.3 V, switchable IO set to 1.8 V

Use Case	Unit	ERTEC 200P-3
switchable I/O voltage	V	3.3
Core (CPUs, RAMs, Clock, Logic)	mW	262.9
Macros (PLLs)	mW	2.3
PN-PHY	mW	360
3.3 V I/Os	mW	23.9
1.8 V I/Os	mW	69.2
1.8 V / 3.3 V I/Os	mW	62.1
total		780.4

3.10 Interface Changes from ERTEC 200P-2 to ERTEC 200P-3

Interface Changes	ERTEC 200P-3	ERTEC 200P-2				
CLK/RES						
CLKP_A renamed to XTAL1	XTAL1	CLKP_A				
CLKP_B renamed to XTAL2	XTAL2	CLKP_B				
TEST						
CTRL_STBY0/1/2 signals are	-	CTRL_STBY0				
removed in ERTEC 200P-3	-	CTRL_STBY1				
	-	CTRL_STBY2				
L/A_PHY1/2						
No changes to inte	rface					
PN_PHY						
No changes to inte	rface					
EMC						
CLK_O_BF0/1/2 signals are - CLK_O_BF0						
removed in ERTEC 200P-3 - CLK_O_B						
- CLK_O_E						
CLK_I_BF signal is removed in ERTEC 200P-3 - CLK_I_BF						
JTAG						
No changes to inte	rface					
GPIO						
No changes to interface						
XHIF						
No changes to interface						
Power/GND						
Power and Ground has changed massively from ERTEC 200P-2 to ERTEC 200P-3						
and has to be redesigned.						

Table 3-10: Interface Changes

4 Design Considerations

4.1 Design Recommendations

Note

Regardig recommendations for board design, e.g., power supply please refer to manual "Evaluation Board ERTEC 200P-3".

4.1.1 Design Recommendations for ERTEC 200P-3 EMC Bus

Note

The following design recommendations apply to the use of EMC with 1.8 V.

4.1.1.1 Recommended EMC Settings

Table 4-1: Recommended EMC settings

	Register	Legacy mode - default	Legacy mode - fast	
EMC	ASYNC_WAIT_CYCLE_CONFIG	0x4000080 (d)		
EMC	SDRAM_CONFIG	0x00002521		
EMC	SDRAM_REFRESH	0x000003CF		
EMC	ASYNC_BANK0	0x3FFFFFF2 (d)	0x0C302502	
EMC	ASYNC_BANK1	0x3FFFFF2 (d)		
EMC	ASYNC_BANK2	0x3FFFFF2 (d)		
EMC	ASYNC_BANK3	0x3FFFFF2 (d)		
EMC	EXTENDED_CONFIG	0x05B74600		
EMC	LPEMR	0x00000000 (d)		
EMC	BF_CONFIG	0x0000000 (d)	0x0000000 (d)	
EMC	PM_CONFIG	0x000003F (d) 0x000003F		
EMC	RECOV_CONFIG	0x0000000 (d)		

Before initialization start, clocks for all chips must be enabled.

Note

Make sure that SDRAM_CONFIG register is written last when initializing EMC-SDRAM registers, because SDRAM Load Mode Register sequence is started when writing SDRAM_CONFIG.
4.1.1.2 Used SDRAM

The board simulation was done with the following SDRAM: Optionally, the following device can be used:

Micron MT48H16M32LFB5-6 IT:C ISSI ISS-IS42VM16320E-75B

Note

The E version of the ISSI is mandatory, earlier versions show incorrect behaviour.

4.1.1.3 Possible ERTEC 200P-3 EMC configurations

The EMC configuration is application-dependent, Figure 4-1 shows all possible configurations.

Figure 4-1: EMC Bus configurations

Mandatory clock signal assignment:

CLK_O_SDRAM(0) must be used as feedback clock source and therefore returned to CLK_I_SDRAM.

CLK_O_SDRAM[2:1] must be used for SDRAM clock source accordingly, so that every SDRAM device has a distinct source.

Note

CLK_O_SDRAM(0) must feedback to CLK_I_SDRAM even if only asynchronous devices are used, because read data is always latched in on ERTEC 200P-3 with CLK_I_SDRAM clock. Allowed velocity and impedance on all EMC transmission lines are:

	Velocity (µm / ps)	Impedance (ohm)
typical	150	60
bestcase	182	69
worstcase	137	51

4.1.1.4 ERTEC 200P-3 EMC recommendations

The recommended values below fulfill the bus configurations/ requirements for ERTEC 200P:

• Min/Max length configuration from driver to receiver

Table 4-2: Min/ max trace length

	Max length [mm]	Min length [mm]	Max # Vias
Address [0-14]	87	6	5
Address [15-23]/ CMD	84	6	4
Data	114	17	4
Clock/ CMD-DQMs	80	17	2

- All transmission lines must be routed on inner layers and referenced to GND.
- All Clocks to SDRAM and the associated feedback clock to ERTEC 200P-3 must match in length within 1 mm.
- All Clocks to Flash and the associated feedback clock to ERTEC 200P-3 must match in length within 1 mm.
- Clocks must always be routed as short as possible.
- Length matching between Data and Address to their corresponding clocks is not necessary.
- Clock must be shorter than the shortest Data line.
- If Address is less than 17 mm, clock max length is 17 mm (corner case).

Figure 4-2: Use Case External Host

In the case of only one participant on ADR (address), Data or CMD line (see Table 4-2), an additional 8.2 pF capacitor is necessary on SDRAM signal lines (keep in mind the dedicated SDRAM signals).

4.1.1.5 SDRAM Write Timing

Figure 4-3 shows the SDRAM Write timing. Data/ address and command are output by ERTEC 200P-3 with the falling edge of CLK_O_SDRAM[1:2] clock and latched in with rising edge on SDRAM.

Figure 4-3: SDRAM Write Timing

4.1.1.6 SDRAM Read Timing

Figure 4-4 shows the SDRAM Read timing. Read data is latched in on ERTEC 200P-3 with rising edge of CLK_I_SDRAM.

Note

CLK_O_SDRAM(0) is not synchronous to CLK_O_SDRAM[1:2].

Figure 4-4: SDRAM Read Timing

4.2 Clocking

4.2.1 Clock Generation and Distribution

The ERTEC 200P-3 clocks are provided by an internal PLL. Apart from the JTAG clock and the PHY clock, all clocks are generated by the integrated PLL.

Note

In ERTEC 200P-2 and earlier it was possible to provide a clock on pin BYP_CLK. This direct clock input has been removed from ERTEC 200P-3. However, pin BYP_CLK is still used for input of F_TAKT that is connected to the F-Timer.

Table 4-3: Overview of ERTEC 200P-3 clocks

Module	Clock Source	Frequency
ARM926EJ-S	PLL	250 MHz
AHB/EMC/ICU/HOST-IF/GDMA		125 MHz
PN-IP (except MAC MII/GMII)		125/250 MHz
PER_IF		125 MHz
APB		125 MHz
Octal SPI shell		125/250/500 MHz
EMC		125 MHz
PerlF		125 MHz
PN PHY		250 MHz
JTAG	JTAG clock	16/32 MHz
MAC MII/GMII / PHY	XTAL1 / external	25/125 MHz

4.2.2 Oscillator

See chapter 3.3.

4.2.3 External Clock Source

It is possible to use an external clock source instead of a quartz crystal as clock input for port XTAL1. In this case the port XTAL2 has to be left unconnected (open). For the requirements of XTAL1 see chapter 3.8.2.

4.2.4 PLL Power Supply

See chapter 3.8.7.2.

4.3 Reset

4.3.1 Power-On Reset Behaviour

For the Power-Up Sequence see chapter 3.8.6.

Access to internal resources of the ERTEC 200P-3 immediately after release of XRESET, e.g. over the XHIF interface, is only allowed after the internal initialization is finished (see also startup times in chapter 4.8.1).

Duration of initialization after deactivating the XRESET:

EMC Init_Done':	<u>233 µs</u>
PLL-Lockup-Time:	250 µs
PLL-Standby-Time:	2 µs

4.3.2 Strapping Pins

See chapter 2.2.1

4.3.3 Reset Structure

Table 4-4: ERTEC 200P-3 Reset Matrix

Destinations Events	Degubber/Direction (Pin XSRST)	ARM926-Core (XRES_ARM926CORE)	ARM926-TCM Toplewal SCRB-TCM926 RES_SOFT_RETURN_ADDR (XRES_SVS)	PN-IP SCRB_PHY_CONFIG/STATUS SCRB_ASYN_RES_CTRL_REG Slice3 EN_WD_RES_PN (XRES_PN-IP)	Clock System (XRES_CTSRS)	JTAG_NTRST (EAS926)	SCRB_ASYN_RES_CTRL_REG Slice5	SCRB_RES_STAT_REG	OSIP (xres_ospi_shell_sctsrs)
PowerOn Reset ERTEC 200P-3 (Pin XRSET)	x/out	x	x	x	x	x	x (1h by PowerOn Reset)	x (4h by PowerOn Reset)	x
Debugger (Pin XSRST)	-/in	x	x	x	-	x	(set to 1)	(set to 4h)	x
JTAG Reset (Pin XTRST)	-/in	-	-	-	-	-	-	-	-
Watchdog Reset ARM926 + PN-IP (XRES_ARM926_WD + Logic)	-/in	x (Pulse duration)	x (Pulse duration)	x (Pulse duration)	-	-	(set to 1)	(set to 1h)	x (Pulse duration)
Watchdog Reset ARM926 without PN-IP (XRES_ARM926_WD + Logic)	-/in	x (Pulse duration)	x (Pulse duration)	-	-	-	-	(set to 1h)	x (Pulse duration)
SW Reset ERTEC 200P-3 without PN-IP/PHY (RES_SOFT)	-/in	x (Pulse duration)	x (Pulse duration)	-	-	-	-	(set to 2h)	x (Pulse duration)
SW Reset PN-IP/PHY (RES_SOFT_PN)	-/in	-	-	x (Pulse duration)	-	-	(set to 1)	-	-
Core Reset ARM926 RES_SOFT_ARM926_CORE	-/in	x (Pulse duration)	-	-	-	-		(set to 8h)	

Key: destination/module is not affected by reset event

4.3.3.1 Asynchronous PowerOn Reset (XRESET)

The asynchronous² PowerOn reset is connected to the ERTEC 200P-3 with the XRESET pin. In response to this reset, the complete circuit (incl. clock system) of the ERTEC 200P-3 is reset and the configuration pins are latched. The XRESET reset must be applied steadily for at least 2 μ s after a steady voltage is reached upon ERTEC 200P-3 startup (see 3.8.6). The PLL then starts up and after a further 250 μ s, the PLL is locked. This time until the PLL locks is t_{LOCK}. Internally, the PowerOn reset phase is extended by this time (fixed setting; the PLL lock is not evaluated) and the clock system is not connected until the end of the startup phase. The internal reset remains active for a further 16 clocks after clock system startup to execute the reset internally. Debugger communication over the JTAG interface is not possible during this time.

¹ Parallel to the EMC Init_Done several internal SRAMs are also initialized during this time. The time for the EMC Init_Done is the longest. Therefore it is listed here.

 $^{^{2}}$ An asynchronous reset affects the reset input of a flip-flop. This reset is applied asynchronously but cleared synchronously.

Hardware monitors the locked state of the PLL. Two interrupts signal whether the PLL has lost its input clock (quartz break) or the PLL is not locked (PLL monitor, monitors input and output frequency). The two error states can also be queried directly from the SCRB register 'PLL_STAT_REG'.

A filter ensures that spikes <= 60 ns (best case) at the XRESET input are suppressed.

While the XRESET pin is active, the bidirectional pin XSRST is switched to output and activated. The debugger can then detect the PowerOn reset phase.

The PWRON_HW_RES bit in RES_STAT_REG is set during a PowerOn reset to allow an analysis of the reset event after a system restart. This bit is not affected by the reset function triggered. Upon restart, the software can read RES_STAT_REG.

Figure 4-5: Reset and Start-up Timing

Key:

- 1. 0
- 2. The supply voltages start to ramp up. There is **no sequencing / no order** of the supplies required.

- a. The core supply voltage is applied. The **ramp-up time** from 10% to 90% of the 1.1V voltage shall be between 10 µs and **100 ms (T0)**. (Same time requirement for ramp-down.)
- b. The 1.8 V I/O supply voltage is applied. The **ramp-up** time from 10% to 90% of the 1.8V voltage shall be between 10 µs and **100 ms (T1)**. (Same time requirement for ramp-down.)
- c. The 3.3 V I/O supply voltage is applied. The **ramp-up** time from 10% to 90% of the 3.3 V voltage shall be between 10 µs and **100 ms (T2)**. (Same time requirement for ramp-down.)
- All power supplies are applied now.
 All power supplies shall be turned on (off) within 200 ms (T3).
- 4. Oscillator output ist stable. Settling time is 1 ms (IO + external crystal + external components as recommended).
- 5. XRESET becomes inactive after all ASIC supply voltage and the oscillator outputs are stable.
- 6. PO_RES_OSC_N becomes inactive synchronous to the oscillator clock.
- 7. The PLLs require that the PLL_STBY signal (PLL-Input PD) is hold to logical 1 for at least 1 μs after the input frequency is stable. The timing is achieved with the Lock-Timer1 (2 μs).
- 8. The Lock-Timer2 gives the PLL enough time to setup the correct output frequency and allow for the required Fuse load time requested by the vendor. The Lock-Timer2 expires after approx. 250 µs.
- 9. All PO resets (beside the PO resets, which are used for the clock generation or at the clock monitor) and the module resets are inactive after five cycles of the appropriate clock.

4.3.3.3 Asynchronous Hardware Reset

The hardware reset is triggered with the XSRST pin by the external debugger. XSRST is a bidirectional IO cell with an open drain output. The complete internal logic is reset in the active XSRST phase, but not the clock system. The configuration pins are also **not** latched. During this hardware reset phase, the debugger can communicate with the embedded ICE logic over the JTAG interface, for example to load a breakpoint. Single stepping is therefore possible from the reset address.

The PWRON_HW_RES bit in RES_STAT_REG is set during a hardware reset to allow an analysis of the reset event after a system restart. This bit is not affected by the reset function triggered. Upon restart, the software can read RES_STAT_REG.

When booting after a hardware reset, the system uses the boot mode latched internally during the PowerOn reset.

XSRST is activated for the debugger if a PowerOn reset is active. XSRST must never be activated with 'RES_SOFT_ARM926_CORE', as this will prevent the debugger from running while one of the two cores is in reset state.

4.3.3.4 Asynchronous JTAG Reset

The JTAG reset is triggered with the XTRST pin by the external debugger. Only the Embedded ICE logic of the ARM926EJ-S is reset. To ensure that this Embedded ICE logic enters a defined state in operation without a debugger, it is also reset by a PowerOn reset (XRESET). An internal logic operation is implemented for this purpose.

4.3.3.5 Asynchronous ARM926 Watchdog Reset

The ARM926 watchdog reset is hardware monitoring of the software on the ARM926EJ-S. The basis for monitoring is a time set in the watchdog timer. This time starts to run when the watchdog is activated. If the timer is not retriggered to its initial value during this time, a watchdog reset (XRES_ARM926_WD) is triggered (output ARM926 watchdog: WD_XWDOUT1). If the watchdog function is enabled (WD_RES_FREI_ARM926) (see ASYN_RES_CTRL_REG), ERTEC 200P-3 is reset. The actual reset signal is related to a configurable pulse generation. The ARM926_WDOG_RES bit in RES_STAT_REG is

set during an ARM926 watchdog reset to allow an analysis of the reset event after a system restart. This bit is not affected by the reset function triggered. Upon restart, the software can read RES_STAT_REG.

If, in a given application, you do not want expiry of the watchdog time to affect the operation of the PN-IP, you can exclude the PN-IP from the watchdog reset (EN_WD_RES_PN = 0 in ASYN_RES_CTRL_REG).

Note

The EN_WD_RES_PN bit is always set (PN-IP subject to ARM926 watchdog reset) if the PN-IP is reset (see Table 4-4). If an asynchronous software reset is to be generated by the SW for the PN-IP (see chapter 4.3.3.7), the SW must then set EN_WD_RES_PN = 0 again to avoid a PN-IP reset at the end of the ARM926 watchdog time.

Before the watchdog expires, an interrupt is generated for the ARM926 watchdog interrupt and the preliminary event 'WD_XWDOUT0' is signaled to the external host over a GPIO pin.

The watchdog also runs when the clock source fails (e.g. quartz break). In this case, the PLL switches to its free-running frequency (100 - 300 MHz).

When booting after a watchdog reset, the system uses the boot mode latched internally during PowerOn reset.

4.3.3.6 Asynchronous Software Reset for ERTEC 200P-3 (without PN-IP)

In the ERTEC 200P, an asynchronous software reset can be triggered by setting the 'RES_SOFT' bit in ASYN_RES_CRTL_REG; the PN-IP and PHYs are not reset. The SW_RES bit in RES_STAT_REG is set during an asynchronous software reset to allow an analysis of the reset event after a system restart. This bit is not affected by the reset function triggered. Upon restart, the software can read RES_STAT_REG.

When booting after a software reset, the system uses the boot mode latched internally during PowerOn reset.

4.3.3.7 Asynchronous Software Reset for PN-IP

The PN-IP and PHYs can only be reset asynchronously by the software with the 'RES_SOFT_PN' bit in the SCRB register 'ASYN_RES_CTRL_REG'.

The HW reset for the integrated PHYs is triggered by the 'phy_reset_o' output of the PN-IP. Whenever the SMI module in the PN-IP is not activated (configuration mode), 'phy_reset_o – output' is active and keeps the PHYs in the reset state.

A simultaneous asynchronous SW reset for the ERTEC 200P-3 and the PN-IP resets the complete ERTEC 200P.

4.3.3.8 Asynchronous Software Reset for the ARM926EJ-S Core

The ARM926EJ-S core (without TCM926) has its own reset, which can be executed asynchronously by the software with the 'RES_SOFT_ARM926_CORE' bit in the SCRB register 'ASYN_RES_ CTRL_REG'. 'RES_SOFT_ARM926_CORE' only affects the ARM926EJ-S core system and not TCM_Block_926. TCM_Block_926 is reset with XRESET, XSRST, XRES_ARM926_WD or RES_SOFT.

The SW_RES_ARM926 bit in RES_STAT_REG is set during an asynchronous software reset for the ARM926EJ-S core system to allow an analysis of the reset event after a system restart. This bit is not affected by the reset function triggered. Upon restart, the software can read RES_STAT_REG.

The asynchronous software reset for the ARM926EJ-S core system is needed once the boot loader has set the final TCM926 configuration. The TCM926 configuration (DRSIZE for D-TCM and IRSIZE for I-TCM \rightarrow from TCM926_MAP register) is only applied to the ARM926EJ-S after a reset.

4.3.3.9 Synchronous Software Reset (PN-IP, PER-IF, XHIF)

The PN-IP, peripheral interface and host interface can be reset synchronously by the software in the SCRB register 'SYN_RES_CTRL_REG'. These synchronous resets affect the SYN reset inputs of the corresponding IPs and reset only the state machines and the local registers and not the parameter registers or the AHB interface. The synchronous reset does not affect the reset input of a flip-flop. The SW must set and then reset the relevant bits in 'SYN_RES_CTRL_REG'. This allows the SW to set the reset state itself.

4.4 GPIO Pins

The GPIO layer mainly provides means for flexible I/O pin mapping / routing. By use of multiplexers it is possible to obtain variable interconnections between predefined signal groups and ASIC I/O pins.

The structure of a single GPIO cell is shown in Figure 4-6. Each cell can either be used for I/O pin routing or as input / output pin of the GPIO parallel ports.

Figure 4-6: Single GPIO Cell

For I/O pin routing, one of 3 alternate functions can be selected for each GPIO cell. Also two parallel GPIO cells are used to provide 6 alternate functions for each GPIO (see chapter 4.6 for GPIO pin mapping).

4.5 Pull-up/down Resistors

See chapter 3.8.2

4.6 GPIO Pin Mapping

GPIO Pin	GPIO Registers	GPIO Alternate Function A	GPIO Alternate Function B	GPIO Alternate Function C
GPIO0_INT	GPIO_*_0.0	PNPLL_OUT0_a	TIM_OUT0_a	reserved
GPIO1_INT	GPIO_*_0.1	PNPLL_OUT1_a	TIM_OUT1_a	reserved
GPIO2_INT	GPIO_*_0.2	PNPLL_OUT2_a	TIM_OUT2	DBGRQ
GPIO3_INT	GPIO_*_0.3	PNPLL_OUT3_a	TIM_OUT3	DBGACK
GPIO4_INT	GPIO_*_0.4	PNPLL_OUT4_a	TIM_OUT4	I2C_SDOI_1_a
GPIO5_INT	GPIO_*_0.5	PNPLL_OUT5_a	TIM_OUT5	I2C_SCLK_1_a
GPIO6_INT	GPIO_*_0.6	PNPLL_OUT6_a	TIM_TRIG0_a	I2C_SDOI_2_a
GPIO7_INT	GPIO_*_0.7	PNPLL_OUT7_a	TIM_TRIG1_a	I2C_SCLK_2_a
GPIO8_INT	GPIO_*_0.8	PNPLL_OUT8_a	TIM_TRIG2	SPI_2_SCLKIN_b
GPIO9_INT	GPIO_*_0.9	PNCLKA_IN_a	TIM_TRIG3	SPI_2_SFRMIN_b
GPIO10_INT	GPIO_*_0.10	NOT_USED	TIM_TRIG4	SPI_2_SSPOE_b
GPIO11_INT	GPIO_*_0.11	PNTIME_OUT_a	TIM_TRIG5	SPI_2_SSPCTLOE_b
GPIO12_INT	GPIO_*_0.12	PNTIME_IN	U2_CTS	SPI_2_SCLKOUT_b
GPIO13_INT	GPIO_*_0.13	WD_XWDOUT0_a	U2_RTS	SPI_2_SFRMOUT_b
GPIO14_INT	GPIO_*_0.14	I2C_SCLK_3	U2_TXD	SPI_2_SSPTXD_b
GPIO15_INT	GPIO_*_0.15	I2C_SDOI_3	U2_RXD	SPI_2_SSPRXD_b
GPIO16	GPIO_*_0.16	SPI_1_SCLKOUT_a	reserved	reserved
GPIO17	GPIO_*_0.17	SPI_1_SFRMOUT_a	reserved	reserved
GPIO18	GPIO_*_0.18	SPI_1_SSPTXD_a	reserved	reserved
GPIO19	GPIO_*_0.19	SPI_1_SSPRXD_a	reserved	reserved
GPIO20	GPIO_*_0.20	SPI_1_SSPOE_a	reserved	reserved
GPIO21	GPIO_*_0.21	SPI_1_SSPCTLOE_a	reserved	reserved
GPIO22	GPIO_*_0.22	SPI_1_SFRMIN_a	reserved	reserved
GPIO23	GPIO_*_0.23	SPI_1_SCLKIN_a	PNCLKA_IN_b	reserved
GPIO24	GPIO_*_0.24	SPI_2_SCLKOUT_a	TIM_OUT0_b	reserved
GPIO25	GPIO_*_0.25	SPI_2_SFRMOUT_a	TIM_OUT1_b	reserved
GPIO26	GPIO_*_0.26	SPI_2_SSPTXD_a	TIM_TRIG0_b	reserved
GPIO27	GPIO_*_0.27	SPI_2_SSPRXD_a	TIM_TRIG1_b	reserved
GPIO28	GPIO_*_0.28	SPI_2_SCLKIN_a	U3_TXD	PNTIME_OUT_b
GPIO29	GPIO_*_0.29	SPI_2_SFRMIN_a	U3_RXD	PNPLL_OUT6_b
GPIO30	GPIO_*_0.30	SPI_2_SSPOE_a	reserved	PNPLL_OUT7_b
GPIO31	GPIO_*_0.31	SPI_2_SSPCTLOE_a	reserved	PNPLL_OUT8_b

GPIO Pin	GPIO Registers	GPIO Alternate Function A	GPIO Alternate Function B	GPIO Alternate Function C
XHIF_A1	GPIO_*_1.0	LOC_IO0	reserved	LOC_SCLKOUT0
XHIF_A2	GPIO_*_1.1	LOC_IO1	reserved	LOC_SFRMOUT0
XHIF_A3	GPIO_*_1.2	LOC_IO2	reserved	LOC_SSPTXD0
XHIF_A4	GPIO_*_1.3	LOC_IO3	reserved	LOC_SSPRXD0
XHIF_A5	GPIO_*_1.4	LOC_IO4	reserved	LOC_SCLKOUT1
XHIF_A6	GPIO_*_1.5	LOC_IO5	reserved	LOC_SFRMOUT1
XHIF_A7	GPIO_*_1.6	LOC_IO6	reserved	LOC_SSPTXD1
XHIF_A8	GPIO_*_1.7	LOC_IO7	reserved	LOC_SSPRXD1
XHIF_A9	GPIO_*_1.8	LOC_IO8	reserved	SPI_1_SCLKOUT_b
XHIF_A10	GPIO_*_1.9	LOC_IO9	reserved	SPI_1_SFRMOUT_b
XHIF_A11	GPIO_*_1.10	LOC_IO10	reserved	SPI_1_SSPTXD_b
XHIF_A12	GPIO_*_1.11	LOC_IO11	reserved	SPI_1_SSPRXD_b
XHIF_A13	GPIO_*_1.12	LOC_IO12	reserved	SPI_1_SSPOE_b
XHIF_A14	GPIO_*_1.13	LOC_IO13	reserved	SPI_1_SSPCTLOE_b
XHIF_A15	GPIO_*_1.14	LOC_IO14	reserved	SPI_1_SCLKIN_b
XHIF_A16	GPIO_*_1.15	LOC_IO15	reserved	SPI_1_SFRMIN_b
XHIF_A17	GPIO_*_1.16	LOC_IO16	reserved	U1_CTS
XHIF_A18	GPIO_*_1.17	LOC_IO17	reserved	U1_DCD
XHIF_A19	GPIO_*_1.18	LOC_IO18	reserved	U1_DSR
XHIF_SEG_2	GPIO_*_1.19	LOC_IO19	reserved	U1_RI
XHIF_SEG_0	GPIO_*_1.20	LOC_IO20	reserved	U1_RTS
XHIF_SEG_1	GPIO_*_1.21	LOC_IO21	reserved	U1_DTR
XHIF_XRDY	GPIO_*_1.22	LOC_IO22	reserved	U4_TXD
XHIF_XRQ	GPIO_*_1.23	LOC_IO23	reserved	U4_RXD
XHIF_XWR	GPIO_*_1.24	LOC_IO24	reserved	PNPLL_OUT0_b
XHIF_XRD	GPIO_*_1.25	LOC_IO25	reserved	PNPLL_OUT1_b
XHIF_XCS_R_A20	GPIO_*_1.26	LOC_IO26	reserved	PNPLL_OUT2_b
XHIF_XCS_M	GPIO_*_1.27	LOC_IO27	reserved	PNPLL_OUT3_b
XHIF_XBE0	GPIO_*_1.28	LOC_1028	reserved	PNPLL_OUT4_b
XHIF_XBE1	GPIO_*_1.29	LOC_1029	reserved	PNPLL_OUT5_b
XHIF_XBE2	GPIO_*_1.30	LOC_IO30	reserved	U1_TXD
XHIF_XBE3	GPIO_*_1.31	LOC_IO31	reserved	U1_RXD

Table 4-6: GPIO Port 1 Input Mapping

GPIO Pin	GPIO Registers	GPIO Alternate Function A	GPIO Alternate Function B	GPIO Alternate Function C
XHIF_D0	GPIO_*_2.0	LOC_IO32	reserved	reserved
XHIF_D1	GPIO_*_2.1	LOC_IO33	reserved	reserved
XHIF_D2	GPIO_*_2.2	LOC_IO34	reserved	reserved
XHIF_D3	GPIO_*_2.3	LOC_IO35	reserved	reserved
XHIF_D4	GPIO_*_2.4	LOC_IO36	reserved	reserved
XHIF_D5	GPIO_*_2.5	LOC_IO37	reserved	reserved
XHIF_D6	GPIO_*_2.6	LOC_IO38	reserved	reserved
XHIF_D7	GPIO_*_2.7	LOC_IO39	reserved	reserved
XHIF_D8	GPIO_*_2.8	LOC_IO40	reserved	reserved
XHIF_D9	GPIO_*_2.9	LOC_IO41	reserved	reserved
XHIF_D10	GPIO_*_2.10	LOC_IO42	reserved	NOT_USED
XHIF_D11	GPIO_*_2.11	LOC_IO43	reserved	WD_XWDOUT0_b
XHIF_D12	GPIO_*_2.12	LOC_IO44	reserved	reserved
XHIF_D13	GPIO_*_2.13	LOC_IO45	reserved	reserved
XHIF_D14	GPIO_*_2.14	LOC_IO46	reserved	reserved
XHIF_D15	GPIO_*_2.15	LOC_IO47	reserved	reserved
XHIF_D16	GPIO_*_2.16	LOC_IO48	reserved	I2C_SDOI_1_b
XHIF_D17	GPIO_*_2.17	LOC_IO49	reserved	I2C_SCLK_1_b
XHIF_D18	GPIO_*_2.18	LOC_IO50	reserved	I2C_SDOI_2_b
XHIF_D19	GPIO_*_2.19	LOC_IO51	reserved	I2C_SCLK_2_b
XHIF_D20	GPIO_*_2.20	LOC_IO52	reserved	reserved
XHIF_D21	GPIO_*_2.21	LOC_IO53	reserved	reserved
XHIF_D22	GPIO_*_2.22	LOC_IO54	reserved	reserved
XHIF_D23	GPIO_*_2.23	LOC_IO55	reserved	reserved
XHIF_D24	GPIO_*_2.24	LOC_IO56	reserved	reserved
XHIF_D25	GPIO_*_2.25	LOC_IO57	reserved	reserved
XHIF_D26	GPIO_*_2.26	LOC_IO58	reserved	reserved
XHIF_D27	GPIO_*_2.27	LOC_IO59	reserved	reserved
XHIF_D28	GPIO_*_2.28	LOC_1060	reserved	reserved
XHIF_D29	GPIO_*_2.29	LOC_IO61	reserved	reserved
XHIF_D30	GPIO_*_2.30	LOC_1062	reserved	reserved
XHIF_D31	GPIO_*_2.31	LOC_IO63	reserved	reserved

Table 4-7: GPIO Port 2 Input Mapping

4.7 Configuration Pins

Global use cases and different test modes can be set with EMC pins that are latched in the CONFIG_REG register during an XRESET active PowerOn reset. These pins resume their EMC function in normal mode once the reset is cleared.

CONFIG(0):	Enable REF_CLK output (25 MHz) or disable (tristate).
CONFIG(1):	always '1' - ARM clock 250 MHz.
CONFIG(2):	always '0' - The OSPI operates in Non-Oct-Mode
CONFIG(6-3):	XHIF interface setting: (off, 16/32-bit) XHIF_XRDY setting: (low-active, high-active) XHIF_XWR setting: (Wr or Read/Write Control)

Table 4-8: Configuration Pins

							Meaning
CONFIG(6) PIN: A23	CONFIG(5) PIN: A22	CONFIG(4) PIN: A21	CONFIG(3) PIN: A20	CONFIG(2) PIN: A19	CONFIG(1) PIN: A18	CONFIG(0) PIN: A17	
-	-	-	-	-	-	1	REF_CLK tristate
-	-	-	-	-	-	0	REF_CLK output (25 MHz)
-	-	-	-	-	0	-	125 MHz ARM clock
-	-	-	-	-	1	-	250 MHz ARM clock
-	-	-	-	0	-	-	OSPI operates in Non-Oct-Mode
0	0	0	0	-	-	-	XHIF = on, 16-bit mode, GPIO95-80 and GPIO63-62 on (all inputs), XHIF_XWR has read/write control, XHIF_XRDY is high-active
0	0	0	1	-	-	-	XHIF = on, 16-bit mode, GPIO95-80 and GPIO63-62 on (all inputs), XHIF_XRD / XHIF_XWR separate, XHIF_XRDY is high-active
0	0	1	0	-	-	-	XHIF = on, 16-bit mode, GPIO95-80 and GPIO63-62 on (all inputs), XHIF_XWR has read/write control, XHIF_XRDY is low-active
0	0	1	1	-	-	-	XHIF = on, 16-bit mode, GPIO95-80 and GPIO63-62 on (all inputs), XHIF_XRD / XHIF_XWR separate, XHIF_XRDY is low-active
0	1	0	0	-	-	-	XHIF = on, 32-bit mode, GPIO95-32 off, XHIF_XWR has read/write control, XHIF_XRDY is high-active
0	1	0	1	-	-	-	XHIF = on, 32-bit mode, GPIO95-32 off, XHIF_XRD / XHIF_XWR separate. XHIF_XRDY is high-active
0	1	1	0	-	-	-	XHIF = on, 32-bit mode, GPIO95-32 off, XHIF_XWR has read/write control, XHIF_XRDY is low-active
0	1	1	1	-	-	-	XHIF = on, 32-bit mode, GPIO95-32 off, XHIF_XRD / XHIF_XWR separate, XHIF_XRDY is low-active
1	0	0	0	-	-	-	XHIF = SPI, GPIO95-62. 54-32 on (all inputs) Note : The boot code does not support an XHIF boot with the

CONFIG(6) PIN: A23	CONFIG(5) PIN: A22	CONFIG(4) PIN: A21	CONFIG(3) PIN: A20	CONFIG(2) PIN: A19	CONFIG(1) PIN: A18	CONFIG(0) PIN: A17	Meaning
							setting CONFIG(6:3)="1000".
1	0	0	1	-	-	-	XHIF = off, GPIO95-32 on (all inputs)
1	1	0	0	-	-	-	 XHIF = on, 32-bit mode, GPIO95-32 off, XHIF_XRD / XHIF_XWR separate, XHIF_XRDY is low-active, Note: The boot code does not support an XHIF boot with the setting CONFIG(6:3)="1100". If an XHIF boot is nevertheless necessary, it must be executed in the setting CONFIG_REG[6:3] == "0111".
	Re	est		-	-	-	XHIF = off, GPIO95-32 on (all inputs)

blue: Default setting with the internal pulls

Note

- GPIO configuration is done in hardware, XHIF configuration is done by PBL only if XHIF boot is selected
- During reset the internal pulls are not applied. External pulls must be connected in order to set the required settings.

4.8 Boot Pins

The required boot mode is saved in the BOOT_REG boot register. Some of the pins of the EMC interface are assigned to the boot register bits 0...4. The EMC pins are latched to the boot register during an active XRESET reset and return to their normal function with an inactive reset.

Table 4-9: Boot Modes

Boot(4) = XAV_BF	Boot(3) = A[16]	Boot(2) = A[15]	Boot(1) =XOE_DRIVER	Boot(0) = DTXR	Boot mode	Booting	
1	1	0	0	1	1	External NOR flash ASYNC_ADDR_M	n (16-bit) ¹⁾ , ODE = 1
1	1	0	1	0	2	External NOR flash ASYNC_ADDR_M	n (32-bit) ¹⁾ , <i>ODE</i> = 1
1	1	1	1	1	7	XHIF full (external	host
0	1	1	1	0	9	Octal-SPI via external serial memory (slave)	8 Byte RSC 2)

1)

The secondary boot loader is run straight from the NOR flash and not from the TCM. The default mode, i.e., without external resistors, is a NOR flash with an access width of 32 bits and is selected with the internal pull circuit (highlighted in **blue**).

2) With error correction and recognition (Reed-Solomon) of max. 8 bytes under usage of the Reed-Solomon Controller (RSC)

Note

During reset the internal pulls are not applied. External pulls must be connected in order to set the required settings.

4.8.1 Startup Times

Depending on the boot mode, the ERTEC 200P-3 requires one of the following startup times:

Table 4-10: Startup Times

Boot mode	Booting		t1	t ₂ (startup time)		
1	External NOR flash (16-bit), ASYNC_ADDR_MODE = 1	Compile mode	485 µs	n.a. ²⁾		
2	External NOR flash (32-bit), ASYNC_ADDR_MODE = 1	Compile mode	485 µs	n.a. ²⁾		
7	XHIF full (external host)		325 µs	41 μs per 1024 bytes (depends on external master speed)		
9	Octal-SPI via external serial memory (slave) 8 bytes RSC ¹		554 µs	454 μs per RSC page (236 bytes net), 515 μs for first RSC page		

With error correction and recognition (Reed-Solomon) of max. 8 bytes under usage of the Reed Solomon Controller (RSC)

² In Compile mode the SBL execution starts immediately after t₁. The SBL is executed by the processor directly from the source memory location (e.g., flash)

t1: Time between XRESET end and loading of first SBL data.

t₂: Time from loading of first SBL data until the first command of the SBL is executed (startup time). This includes the time for copying data. If the alternative block is used or several data bytes are copied, the time may be longer.

The startup times in ERTEC 200P-3 are calculated based on t_1+t_2 .

5 Package

5.1 Package Drawing

The ERTEC 200P-3 has a 358-ball full grid P-LFBGA package. The ball pitch is 0.8 mm. The package size is 17 mm x 17 mm. The inner rows of balls act as the voltage supply and as thermal balls (see chapter 5.2).

Package dimensions P-LFBGA358-1717-0.80-001/F01

"Unit:mm"

Figure 5-1: Package Dimensions (Top, Side)

Rev01

Figure 5-2: Package Dimensions (Bottom)

5.2 Ball Layout

Top-View

Lower Ball	1	2	з	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
<	GND	GND	A_PHY_1	A_PHY_2	GPIO25	GPIO24	TMC2	REF_CLK	XTAL1	GND	GPIO12_INT	GPIO11_INT	GPIO18	GPIO7_INT	GPIO5_INT	TDI	TAP_SEL	D0	D13	GND
B	P2TDXN	P2TDXP	GND	GND	GPIO23	GPIO21	GPIO29	TACT	XTAL2	TEST	GPIO10_INT	GPIO14_INT	GPIO15_INT	GPIO6_INT	GPIO2_INT	RTCK	XTRST	D15	D4	D1
o	GND	GND	P2SDXN	P2SDXP	GND	GPIO27	GPIO20	GPIO26	GND	XSRST	GND	GPIO19	GPIO17	GND	GPIO0_INT	TDO	GND	D3	D2	D14
٩	P2RDXN	P2RDXP	GND	GND	L_PHY_1	GPIO22	GPIO30	GPIO28	XRESET	GND	GPIO9_INT	GPIO13_INT	GPIO16	GPIO4_INT	GPIO1_INT	тск	D11	D12	D9	D7
w	GND	GND	P2RXN	P2RXP	GND	L_PHY_2	GPIO31	GND	GND	GND	GPIO8_INT	BYP_CLK	TMS	GPIO3_INT	CHAIN_CTR L	GND	D6	DTXR	GND	D10
Ŀ	P2TXN	P2TXP	GND	GND	GND											GND	XOE_DRIVE R	D8	XBE0_DQM 0	XBE1_DQM 1
Ð	GND	GND	P2FXEN	GND	GND		VDDIOA_PH Y	VDD_CORE	VDD33			VDD33	VDD33			D5	XCS_PER1	XCS_PER0	A21	A22
Ŧ	XHIF_D2	XHIF_D15	GND	GND	GND		VDDIOD_P HY	VDDIOA_PH Y	VSSIOA_PH Y	GND	GND	VDD_CORE	GND	VDD_CORE		GND	A23	A18	A20	A17
ŗ	XHIF_XRDY	XHIF_D10	XHIF_D13	XHIF_D6	VQPS		VDDA_PHY	VSSA_PHY	GND	GND	GND	GND	GND	VDD_EMC		A19	XWR	A15	GND	A16
×	XHIF_D5	GND	XHIF_D1	XHIF_D9	GND		AVDDHV_P LL	AVDD_PLL	GND	GND	GND	GND	VDD_CORE			XRD	XRDY_BF	A14	XAV_BF	XWE_SDRA M
-	XHIF_D8	XHIF_D7	XHIF_D14	XHIF_D11	GND		VDD_XHIF	VDD_CORE	GND	GND	GND	GND	GND	VDD_EMC		GND	CLK_O_SD RAM1	CLK_O_SD RAM2	XCAS_SDR AM	A13
z	XHIF_D4	GND	XHIF_D0	XHIF_D12	GND		VDDIOD_P HY	VDDA_PHY	VSSA_PHY	GND	GND	GND	GND	VDD_CORE		A12	XRDY_PER	A11	XRAS_SDR AM	XCS_SDRA M
z	XHIF_D3	XHIF_XBE1	XHIF_XBE0	XHIF_XIRQ	GND		VDDIOA_PH Y	VSSIOA_PH Y	GND	VDD_CORE	GND	GND	GND	VDD_EMC		CLK_LSDR AM	A10	AO	GND	CLK_O_SD RAM0
٩	GND	GND	P1FXEN	GND	GND		VDDIOA_PH Y	VDD_CORE		VDD_XHIF	VDD_OSPI	VDD_OSPI	VDD_XHIF			A4	A6	A8	A9	A7
æ	P1TXN	P1TXP	GND	GND	GND											GND	D16	XCS_PER3	A3	A1
F	GND	GND	P1RXN	P1RXP	GND	TMC1	XHIF_A19	XHIF_A18	GND	GND	XHIF_XBE3	XHIF_D30	XHIF_D24	GND	GND	GND	D29	A5	XBE2_DQM 2	A2
5	P1RDXN	P1RDXP	GND	GND	XHIF_XWR	GND	XHIF_A15	GND	XHIF_A16	GND	XHIF_D21	XHIF_D28	XHIF_D29	XHIF_D20	XHIF_D17	D25	D17	XBE3_DQM 3	GND	XCS_PER2
>	GND	GND	P1SDXN	P1SDXP	GND	XHIF_A12	XHIF_XCS_ M	XHIF_A17	GND	GND	XHIF_A4	GND	XHIF_D27	GND	XHIF_D25	D21	D19	D27	D31	D18
*	P1TDXN	P1TDXP	GND	GND	XHIF_SEG_ 1	XHIF_SEG_ 2	XHIF_A10	XHIF_A9	XHIF_A3	XHIF_A1	XHIF_A2	XHIF_D31	XHIF_A14	XHIF_D18	XHIF_D16	GND	D26	D28	D30	D20
¥	GND	GND	XHIF_SEG_ 0	XHIF_XRD	XHIF_XCS_ R_A20	XHIF_A13	XHIF_A11	XHIF_A6	XHIF_A7	XHIF_A5	XHIF_A8	XHIF_XBE2	XHIF_D26	XHIF_D22	XHIF_D23	XHIF_D19	D24	D23	D22	GND
																Signals are gro	ouped accordin	ig to their color		
																CLK	RES ST			
																EN PN_	MC PHY			
																GPIO XHIF (GF	031 103255)			

5.3 Marking (Printed)

The ERTEC 200P-3 ASIC package is printed as follows:

Figure 5-5: Marking

5.4 Order Codes (MLFBs)

Table 5-1: Order codes

	Number of pieces ¹	Order Code	Packing information
ERTEC200P-3	10	6ES7195-0BH03-0XA0	Cut Tape
ERTEC200P-3	100	6ES7195-0BH13-0XA0	Tape&Reel
ERTEC200P-3	800	6ES7195-0BH33-0XA0	Tape&Reel

5.5 Thermal Characteristics

The following values apply to the ERTEC 200P-3 through usage of the selected package:

Table 5-2: Thermal Characteristics

Package	Ambient temperature T _A	junction-to-ambient air thermal resistance θ_{ja}	junction-to-top thermal characterization parameter Ψ_{jt}
P-LFBGA358-	25 °C	27.9 °C/W	0.32 °C/W
(ERTEC 200P-3)	85 °C	24.5 °C/W	0.35 °C/W

The conditions are as follows:

- Chip size 3.962 mm x 4.592 mm
- Natural air cooling (no airflow)
- JEDEC standards conformance
- Six layer board (thickness 1.2 mm, layer stack A5E00886630BS, 85% VIA/Ball)

¹ The number of pieces may be subject to change.

• Thermal resistance around the working point of 1.1 W

With

- T_T ... temperature at the top center of the package and
- P ... the chip's total power dissipation

The ERTEC 200P-3 junction temperature T_J can be estimated with formulas (1) or (2).

(1) $\theta_{ja} = (T_J - T_A) / P$ (2) $\Psi_{jt} = (T_J - T_T) / P$

EIA/JEDEC51-1, 51-2 define thermal characters as follows,

- *θ* ja Thermal resistance, junction-to-ambient
- **¥jt**Thermal characterization parameter, junction to
the top center of the package surface.
- θ jc Thermal resistance, junction-to-case
- θ jb Thermal resistance, junction-to-ball

5.5.1 Max. junction temperature T_J

With a maximum power dissipation of the ERTEC 200P-3 of < 944 mW (see chapter 3.9) an actual junction temperature (temperature on the die) results of:

Table 5-3: Max. Juction Temperature

	Ambient temperature T _A	Junction temperature TJ	Top-Case temperature T⊤
P-LFBGA358-1717-0.8	25°C	< 51.4 °C	< 51.1 °C
(ERTEC 200P-3)	85°C	< 108.2 °C	< 107.8 °C

The lifetime depends on the junction temperature at 100 % duty.

Table 5-4: Livetime

Junction Temperature (with 100% duty)	Hard Error FIT Rate	Max. Lifetime ¹
100°C	4.4 FIT	10 years
105°C	5.9 FIT	10 years
108°C	7.0 FIT	10 years
110°C	7.8 FIT	10 years
112°C	8.7 FIT	10 years
115°C	10.2 FIT	7.7 years
118°C	12.0 FIT	6.1 years
120°C	13.3 FIT	5.3 years

5.6 Solder Profile

The following lead-free reflow soldering profile (acc. to the IPC J-STD-020D-1) will be guaranteed.

Figure 5-6: Solder Profile

¹ After this period of time the devices will fail epidemically because of electromigration. The values of the maximum lifetime for a junction temperature below 112°C shall be higher than 10 years, but Toshiba supports a maximum of 10 years for this technology only. The devices, which are used at these lower temperatures, will not fail after 10 years epidemically.

Key	Par.	Profile Feature	Pb free Process
R.1	Tsmin	Minimum pre-heating temperature	150 °C
R.2	Tsmax	Maximum pre-heating temperature	200 °C
R.3	ts	Pre-heating time (Tsmin to Tsmax)	120 sec
R.4	dT/dt up	Average ramp-up rate (T _{smax} to T _p)	3 °C/sec max.
R.5	ΤL	Liquidous temperature	217 °C
R.6	t∟	Time duration at liquidous	min. 90 sec
R.7	Тр	Peak package body temperature	min. 260°C for package < 350 mm ³
			min. 245°C for package > 350 mm ³
R.8	tp	Time within 5 °C of the specified Peak package body temperature T _P	min. 30 sec
R.9	dT/dt down	Average ramp-down rate (Tp to Tsmax)	6 °C/sec max.
R.10	t25°-peak	Time 25 °C to peak temperature	8 minutes max.

Table 5-5: Tabular form for soldering profile data

Measurement points during re-flow soldering: at the critical termination, the top side of the component body (acc. to the IEC 60068-2-58). Number of passes: all products supporting reflow soldering shall be capable of 3 passes.

Figure 5-7: Reflow Profile

Table 4-2	Pb-Free	Process -	Classification	Temperatures (T _c)
-----------	---------	-----------	----------------	--------------------------------

Package Thickness	Volume mm ^a <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm - 2.5 mm	260 °C	250 °C	245 °C
>2.5 mm	250 °C	245 °C	245 °C

5.7 Packing Information

5.7.1 Tape&Reel

Final testing and packing will be done at two different sites (STK in Oita/Japan and ASE in Kaohsiung/Taiwan). The Tape&Reel specification differs slightly.

5.7.1.1 Tape&Reel specification for STK final testing and packing

Toshiba product name: T6WZ9SBG-0001(ETO)

Figure 5-8: Carrier Tape (STK)

Note

The corner and ridge radiuses (R) of inside cavity are 0.3 mm max.

Cumulative tolerance of 10 pitches of the sprocket hole is ± 0.2 mm.

Measuring of cavity positioning is based on cavity center in accordance with JIS/IEC standard.

Carrier tape dimensions follow EIA-481 standard.

Figure 5-9: Cover Tape & Reel (STK)

5.7.1.1 Tape&Reel specification for ASE final testing and packing

Toshiba product name: T6WZ9SBG-0001(ETT)

Figure 5-10: Carrier Tape (ASE)

Note

Carrier tape dimensions follow EIA-481 standard.

Dimensions in mm.

10 Sprocket hole pitches cumulative tolerance ±0.20 mm.

Camber not to exceed 1 mm in 250 mm.

Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Volume resistivity $\geq 1.0^{*}10^{4} \sim <1.0^{*}10^{11}$ ohm-cm (surface resistivity $\geq 1.0^{*}10^{5} \sim <1.0^{*}10^{12}$ ohms/sq

Figure 5-11: Cover Tape & Reel (STK)

5.7.2 Packing

5.7.2.1 Packing specifications for STK final testing and packing

Figure 5-12: Packing specifications (STK)

Figure 5-13: Packing specification (ASE)

5.7.3 Moisture Sensitivity Level

ERTEC 200P-3: J-STD-20 MSL3.

5.7.4 Storage Temperature

Table 5-6: Storage Temperature

	symbol	min	max	unit
Storage Temperature	Tstg	-40	125	°C

6 Quality

6.1 Hard-Error FIT Rates

(24h per day and 60% UCL (Upper Confidence Level))

Table 6-1: Hard-Error FIT Rates

	FIT-Rate for hard errors / silicon defects:
60°C ambient temperature	1.8 FIT (in 10 years), Component Hours (Device hour): 1.13E+09 hr
70°C ambient temperature	3.3 FIT (in 10 years), Component Hours (Device hour): 8.30E+08 hr
85°C ambient temperature	7.8 FIT (in 10 years), Component Hours (Device hour): 2.58E+08 hr

6.2 Soft-Error FIT Rates

Double bit errors: The adjacent bits in single port RAMs are in different words, therefore they can be corrected by ECC. Based on literature values and simulation results double bit fails have a probability of $1/10^{th}$ to $1/100^{th}$ of single bit fails.

Soft-error rate for the memories in the ERTEC 200P-3 (alpha & neutron):

	0m	2000m	2300m	2500m	3000m	3500m	4000m	5000m
Alpha ¹	16.1 FIT							
Neutron ²	33.5 FIT	176.2 FIT	220.1 FIT	254.3 FIT	359.8 FIT	500.5 FIT	684.4 FIT	1220.1 FIT
Factor to neutron 0m ³	x 1.0	x 5.26	x 6.57	x 7.59	x 10.74	x 14.94	x 20.43	x 36.42
Total SER	49.6 FIT	192.3 FIT	236.2 FIT	270.4 FIT	375.9 FIT	516.6 FIT	700.5 FIT	1236.2 FIT

Table 6-2: Soft-Error FIT Rates

Note

The neutron factor for various different heights can be calculated at the following WEB link: http://www.seutest.com/cgi-bin/FluxCalculator.cgi

6.3 RoHS / REACH

Information about RoHS and REACH can be found at BOMcheck (see <u>https://app.bomcheck.com/</u>) with the Toshiba product name: T6WZ9SBG.

- ² Calculation based on 364 FIT/MBit
- ³ Location: New York, USA

¹ Calculation based on 175 FIT/MBit